Transfer Learning-Enabled Ligand Prediction for Ni-Catalyzed Atroposelective Suzuki–Miyaura Cross-Coupling Based on Mechanistic Similarity: Leveraging Pd Knowledge for Ni Discovery

化学 联轴节(管道) 相似性(几何) 催化作用 配体(生物化学) 组合化学 人工智能 受体 有机化学 生物化学 计算机科学 机械工程 工程类 图像(数学)
作者
Xinyuan Xu,Li‐Gao Liu,Li‐Cheng Xu,Shuo‐Qing Zhang,Xin Hong
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c00838
摘要

The rational design of novel molecular catalysts often confronts challenges due to complex structure–performance relationships. Emerging data-driven approaches provide revolutionary solutions, yet the application of machine learning to new catalyst development inevitably faces a low-data regime with limited effective structure–performance modelings available. In this study, we present a transfer learning strategy to facilitate knowledge transfer from well-documented Pd catalysis to a novel, underexplored Ni system. By synergistically modeling extensive Pd catalysis data with limited Ni/Sadphos data, our approach accurately predicted novel Sadphos ligands, enabling the first atroposelective Ni-catalyzed Suzuki–Miyaura cross-coupling reaction. The synthetic utility of the machine learning-predicted ligand was further demonstrated in its broad synthetic scope, gram-scale synthesis, and precise control of dual axial chiralities in ternaphthalene through the sequential coupling under Ni and Pd catalysis. Additionally, density functional theory calculations were employed to reveal the reaction mechanism and stereochemical model of this new Ni catalyst, validating the proposed mechanistic connection between Ni and Pd. This work demonstrates how machine learning models can effectively leverage mechanistic connectivity, applying extensive structure–performance relationship data from the literature to predict new catalysts, providing a novel strategy for the rational design of molecular catalysts from a few-shot learning perspective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助347u采纳,获得10
刚刚
风清扬发布了新的文献求助10
刚刚
cher123456完成签到 ,获得积分10
1秒前
daiyu完成签到,获得积分20
2秒前
martin233发布了新的文献求助30
2秒前
FashionBoy应助tz采纳,获得10
3秒前
超级南风发布了新的文献求助10
4秒前
善学以致用应助LI369258采纳,获得10
4秒前
王贤平完成签到,获得积分10
4秒前
4秒前
特独斩完成签到,获得积分10
6秒前
科研通AI5应助别喝他的酒采纳,获得10
7秒前
科研通AI5应助博修采纳,获得10
10秒前
BiuBiu怪完成签到,获得积分10
11秒前
12秒前
martin233完成签到,获得积分10
13秒前
13秒前
我就是我完成签到,获得积分10
13秒前
华仔应助忧虑的鼠标采纳,获得10
15秒前
黄启烽完成签到,获得积分10
15秒前
16秒前
天才幸运鱼完成签到,获得积分10
16秒前
kfc19960203发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
君莫问完成签到,获得积分10
20秒前
zz123发布了新的文献求助10
20秒前
陌上花完成签到,获得积分10
21秒前
LI369258发布了新的文献求助10
21秒前
沉默寄凡完成签到,获得积分10
21秒前
大个应助daiyu采纳,获得10
21秒前
21秒前
CodeCraft应助砂砾采纳,获得10
21秒前
小蘑菇应助慕听采纳,获得10
22秒前
Amon完成签到,获得积分10
23秒前
25秒前
26秒前
慕子完成签到 ,获得积分10
27秒前
27秒前
kfc19960203完成签到,获得积分10
27秒前
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212780
求助须知:如何正确求助?哪些是违规求助? 3747005
关于积分的说明 11789485
捐赠科研通 3414563
什么是DOI,文献DOI怎么找? 1873739
邀请新用户注册赠送积分活动 928108
科研通“疑难数据库(出版商)”最低求助积分说明 837442