纤维素
材料科学
木质素
锂(药物)
电解质
聚合物
离子液体
离子电导率
电池(电)
化学工程
磷酸三甲酯
纳米技术
有机化学
复合材料
化学
电极
物理化学
催化作用
功率(物理)
内分泌学
工程类
物理
磷酸盐
医学
量子力学
作者
Yuhan Liu,Yangyang Yu,Yatao Liu,Shenyuan Li,Chengzhe Liu,Wei Hu,Yunfeng Lu,Guangshan Zhu
标识
DOI:10.1002/aenm.202501737
摘要
Abstract The pursuit of safe and temperature‐resilient lithium batteries faces a critical dilemma: conventional liquid electrolytes compromise safety with flammable organic solvents, while existing solid‐state alternatives suffer from insufficient ionic conductivity. This study unveils a nonflammable biomimetic electrolyte architecture inspired by plant cell walls, integrating bacterial cellulose (BC) with lignin‐derived flame‐retardant microspheres (LNDP) and lithium‐functionalized hydroxyapatite (HAPLi). The “cellulose−lignin−hemicellulose” biomimetic framework establishes multiple Li + transport channels, and achieves high Li + transfer number (0.75) and exceptional ionic conductivity (4.69 mS cm⁻ 1 at 30 °C; 0.162 mS cm⁻ 1 at −20 °C) through the fluorine/phosphorus‐rich solid electrolyte interphase (SEI). At 0.2 C, the assembled Li||LiFePO 4 battery with BC/Li‐FR exhibits a high initial discharge capacity of 117 mAh g −1 at −20 °C, and stably cycles 800 cycles with a high retention rate of 97.7%. The Li||NCM811 battery maintains a high capacity of 151.4 mAh g⁻ 1 after 130 cycles at −20 °C. This work demonstrates that the BC/Li‐FR architecture enables self‐regulating lithium‐ion deposition behavior, thereby effectively suppressing dendrite formation and growth. The findings lay a groundbreaking foundation for developing inherently safe lithium batteries capable of stable operation across a wide temperature spectrum, including challenging cryogenic environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI