Novel deterministic and probabilistic forecasting methods for crude oil price employing optimized deep learning, statistical and hybrid models

计算机科学 自回归积分移动平均 概率逻辑 人工神经网络 人工智能 统计模型 乘法函数 深度学习 机器学习 时间序列 数学 数学分析
作者
Sourav Kumar Purohit,Sibarama Panigrahi
出处
期刊:Information Sciences [Elsevier BV]
卷期号:658: 120021-120021 被引量:7
标识
DOI:10.1016/j.ins.2023.120021
摘要

In this paper, individual and hybrid methods are proposed employing optimized statistical and deep learning (DL) models for deterministic (point) and probabilistic (interval) forecasting of crude oil price time series. The statistical models are optimized using the Forecast package of R. To enhance the performance of DL models, a novel pruning DE-DL method is proposed, which employs the differential evolution (DE) algorithm to optimize architecture and continuous and discrete-valued hyper-parameters. The proposed DE-DL method is so generic that it can be applied to optimize different DL models for any supervised learning problem. Five DL models (LSTM, BiLSTM, GRU, CNN, and ConvLSTM) are optimized for forecasting monthly crude oil prices and hybridized with an optimized ARIMA model for developing optimized additive and multiplicative hybrid forecasting models. The effectiveness of the proposed methods is evaluated through deterministic and probabilistic forecasting measures, comparing the results with six optimized statistical models, thirteen machine learning models, five optimized DL models, and ten optimized hybrid models. It is observed from the simulation results that the proposed optimized Additive-ARIMA-GRU hybrid model provides statistically superior forecasts, and the t Location Scale distribution is more suitable than the Gaussian distribution for computing reliable prediction intervals with different significance levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
去晒月亮完成签到,获得积分10
刚刚
WerWu完成签到,获得积分10
刚刚
勤恳天寿完成签到,获得积分10
3秒前
依依完成签到 ,获得积分10
4秒前
宝儿柯察金完成签到,获得积分10
4秒前
卡卡发布了新的文献求助10
4秒前
5秒前
小晓晓完成签到,获得积分10
6秒前
7秒前
9秒前
愉快凌晴完成签到,获得积分10
10秒前
橘子发布了新的文献求助10
10秒前
11秒前
科研通AI5应助青青采纳,获得10
11秒前
新威宝贝发布了新的文献求助10
12秒前
去晒月亮发布了新的文献求助10
15秒前
16秒前
Tiwiiw完成签到 ,获得积分10
17秒前
冷艳薯片完成签到,获得积分10
19秒前
ChiHiRo9Q应助杨幂采纳,获得10
20秒前
20秒前
Ws完成签到,获得积分10
20秒前
张小馨完成签到 ,获得积分10
21秒前
21秒前
23秒前
研友_8WzJOZ完成签到,获得积分10
24秒前
郭凯辉发布了新的文献求助10
25秒前
赛因斯完成签到,获得积分10
25秒前
32秒前
月光入梦完成签到 ,获得积分10
35秒前
美好的小馒头完成签到,获得积分20
36秒前
36秒前
李123456完成签到,获得积分10
36秒前
可爱的函函应助惠向雁采纳,获得30
37秒前
科研通AI5应助hodge采纳,获得10
38秒前
ohcepf发布了新的文献求助10
39秒前
39秒前
小金星星完成签到 ,获得积分10
39秒前
40秒前
如意完成签到,获得积分10
43秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852