Graph-enhanced and collaborative attention networks for session-based recommendation

计算机科学 会话(web分析) 注意力网络 图形 水准点(测量) 功率图分析 协同过滤 机器学习 理论计算机科学 推荐系统 人工智能 数据挖掘 万维网 大地测量学 地理
作者
Xiaoyan Zhu,Yu Zhang,Jiayin Wang,Guangtao Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:289: 111509-111509 被引量:7
标识
DOI:10.1016/j.knosys.2024.111509
摘要

Session-based recommendation uses short interaction sequences of anonymous users to predict the next item most likely to be clicked, and many methods have been proposed. However, there are still problems with the existing methods. Existing approaches can be divided into two groups based on data organization: (1) graph-based methods using graph neural networks to capture complex item transformations; (2) sequence-based approaches using self-attention networks to capture chained user interest patterns. Both methods are only applicable to specific kinds of user interest patterns due to the characteristics of the neural networks they use and cannot be adaptively used in all scenarios. Moreover, the recent approaches capture collaborative information from other sessions by constructing global graphs, etc., in order to enrich the current session, which can compromise personalized modeling due to the introduction of items that are not relevant to the current user. This work proposes a graph-enhanced and collaborative attention network (GCAN) to solve the above problems. In GCAN, graph-enhanced attention is designed to model user interest over item-specific subsequences with the help of a graph mask and distance bias, which include item transformations mined in session graphs and chained user interest in session sequences. In addition, collaborative attention is proposed to model the item representation within the current session at the collaborative level by exploiting the collaborative information from all sessions. Extensive experiments on three real benchmark datasets show that GCAN significantly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥拉同学完成签到,获得积分10
1秒前
xgx984完成签到,获得积分10
1秒前
传奇3应助ju龙哥采纳,获得10
1秒前
AI关注了科研通微信公众号
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
实验小菜鸡完成签到 ,获得积分10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
LVMIN发布了新的文献求助10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小花排草应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助淘气科研采纳,获得10
5秒前
怡然思萱完成签到 ,获得积分10
6秒前
wcj完成签到,获得积分20
6秒前
秦兴虎发布了新的文献求助10
6秒前
闪闪含巧发布了新的文献求助10
6秒前
6秒前
小马驹发布了新的文献求助10
6秒前
阿兹卡班发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4146273
求助须知:如何正确求助?哪些是违规求助? 3682923
关于积分的说明 11637385
捐赠科研通 3375663
什么是DOI,文献DOI怎么找? 1853469
邀请新用户注册赠送积分活动 915936
科研通“疑难数据库(出版商)”最低求助积分说明 830112