Deep Learning Classification of Usual Interstitial Pneumonia Predicts Outcomes

医学 寻常性间质性肺炎 危险系数 置信区间 接收机工作特性 特发性肺纤维化 比例危险模型 队列 放射科 内科学
作者
Stephen M. Humphries,D. Thieke,David Baraghoshi,Matthew Strand,Jeffrey J. Swigris,Kum Ju Chae,Hye Jeon Hwang,Andrea Oh,Kevin R. Flaherty,Ayodeji Adegunsoye,Renea Jablonski,Cathryn T. Lee,Aliya N. Husain,Jonathan H. Chung,Mary E. Strek,David A. Lynch
出处
期刊:American Journal of Respiratory and Critical Care Medicine [American Thoracic Society]
卷期号:209 (9): 1121-1131 被引量:14
标识
DOI:10.1164/rccm.202307-1191oc
摘要

Rationale: Computed tomography (CT) enables noninvasive diagnosis of usual interstitial pneumonia (UIP), but enhanced image analyses are needed to overcome the limitations of visual assessment. Objectives: Apply multiple instance learning (MIL) to develop an explainable deep learning algorithm for prediction of UIP from CT and validate its performance in independent cohorts. Methods: We trained a MIL algorithm using a pooled dataset (n=2,143) and tested it in three independent populations: data from a prior publication (n=127), a single-institution clinical cohort (n=239), and a national registry of patients with pulmonary fibrosis (n=979). We tested UIP classification performance using receiver operating characteristic (ROC) analysis with histologic UIP as ground truth. Cox proportional hazards and linear mixed effects models were used to examine associations between MIL predictions and survival or longitudinal forced vital capacity (FVC). Measurements and Main Results: In two cohorts with biopsy data, MIL improved accuracy for histologic UIP (area under the curve [AUC] 0.77 [n=127] and 0.79 [n=239]) compared to visual assessment (AUC 0.65 and 0.71). In cohorts with survival data, MIL UIP classifications were significant for mortality ([n=239, mortality to April 2021] unadjusted hazard ratio 3.1 95% confidence interval [CI] [1.96, 4.91] p<0.001, and [n=979, mortality to July 2022] 3.64 95% CI [2.66, 4.97] p<0.001). Individuals classified as UIP positive by the algorithm had a significantly greater annual decline in FVC than those classified as UIP negative (-88 ml/year versus -45 ml/year, n=979 p<0.01), adjusting for extent of lung fibrosis. Conclusions: Computerized assessment using MIL identifies clinically significant features of UIP on CT. Such a method could improve confidence in radiologic assessment of patients with interstitial lung disease, potentially enabling earlier and more precise diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牵墨发布了新的文献求助10
1秒前
HEAUBOOK应助彩色的小懒虫采纳,获得10
1秒前
cristole完成签到 ,获得积分10
1秒前
李健的粉丝团团长应助US采纳,获得10
1秒前
scdd完成签到 ,获得积分10
2秒前
2秒前
充电宝应助hebhm采纳,获得10
2秒前
2秒前
优雅白凡完成签到 ,获得积分10
3秒前
Square发布了新的文献求助10
3秒前
cyc发布了新的文献求助10
4秒前
4秒前
Rong完成签到 ,获得积分10
5秒前
SS1025861发布了新的文献求助10
6秒前
6秒前
tumatto完成签到,获得积分20
7秒前
7秒前
7秒前
NexusExplorer应助祖冰绿采纳,获得10
7秒前
牵墨完成签到,获得积分10
7秒前
8秒前
9秒前
小熊发布了新的文献求助20
9秒前
Amen发布了新的文献求助10
9秒前
bkagyin应助zhang采纳,获得10
9秒前
科研通AI5应助劣根采纳,获得10
9秒前
10秒前
10秒前
桐桐应助悟空采纳,获得10
11秒前
大空翼发布了新的文献求助10
11秒前
12秒前
SiDi发布了新的文献求助10
12秒前
12秒前
打打应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得20
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得20
13秒前
Ava应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得20
13秒前
ding应助科研通管家采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790371
求助须知:如何正确求助?哪些是违规求助? 3335077
关于积分的说明 10273337
捐赠科研通 3051539
什么是DOI,文献DOI怎么找? 1674723
邀请新用户注册赠送积分活动 802757
科研通“疑难数据库(出版商)”最低求助积分说明 760853