亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities

预言 可解释性 失效物理学 背景(考古学) 数据驱动 可靠性(半导体) 领域(数学) 数据科学 数据质量 计算机科学 质量(理念) 预测建模 风险分析(工程) 数据挖掘 工程类 机器学习 人工智能 物理 哲学 古生物学 功率(物理) 公制(单位) 纯数学 认识论 生物 医学 量子力学 数学 运营管理
作者
Huiqin Li,Zhengxin Zhang,Tianmei Li,Xiaosheng Si
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:209: 111120-111120 被引量:92
标识
DOI:10.1016/j.ymssp.2024.111120
摘要

Remaining useful life (RUL) prediction, known as 'prognostics', has long been recognized as one of the key technologies in prognostics and health management (PHM) to maintain the safety and reliability of the system, and reduce the operating and management costs. Particularly, thanks to great advances in sensing and condition monitoring techniques, data-driven RUL prediction has attracted much attention and various data-driven RUL prediction methods have been reported. Despite the extensive studies on data-driven RUL prediction methods, the successful applications of such methods depend heavily on the volume and quality of the data, and purely data-driven methods possibly generate physically infeasible/inconsistent RUL prediction results and have the limited generalizability and interpretability. It is noted that there is an increasing consensus that embedding the physics or the domain knowledge into the data-driven methods and developing physics-informed data-driven methods will hold promise to improve the interpretability and efficiency of the RUL prediction results and lower the requirement of the volume and quality of the data. In this context, physics-informed data-driven RUL prediction has become an emerging topic in the prognostics field. However, there has not been a systematic review particularly focused on this emerging topic. To fill this gap, this paper reviews recent developments of physics-informed data-driven RUL prediction methods. In this review, current methods fallen into this type are broadly divided into three categories, i.e. physical model and data fusion methods, stochastic degradation model based methods, and physics-informed machine learning (PIML) based methods. Particularly, this review is centered on the PIML based methods since the fast development of such methods have been witnessed in the past five years. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of physics-informed data-driven RUL prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cherlie完成签到,获得积分10
3秒前
16秒前
科研通AI5应助苹果果汁采纳,获得30
20秒前
哇哇哇发布了新的文献求助30
22秒前
27秒前
苹果果汁发布了新的文献求助30
34秒前
aikeyan完成签到 ,获得积分10
36秒前
36秒前
开心的雅柏完成签到,获得积分10
46秒前
mmyhn发布了新的文献求助10
54秒前
40873完成签到 ,获得积分10
54秒前
自由的无色完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zhangjinchao发布了新的文献求助10
1分钟前
1分钟前
所所应助zhangjinchao采纳,获得10
1分钟前
lysbor发布了新的文献求助20
1分钟前
刘峥峥完成签到,获得积分10
1分钟前
1分钟前
蒋瑞轩发布了新的文献求助10
1分钟前
两袖清风完成签到 ,获得积分10
1分钟前
情怀应助蒋瑞轩采纳,获得10
1分钟前
马佳音完成签到 ,获得积分10
1分钟前
苹果果汁完成签到,获得积分10
1分钟前
沉默的钻石完成签到,获得积分10
1分钟前
1分钟前
23应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
23应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
23应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
Mzb发布了新的文献求助10
2分钟前
隐形曼青应助menyu采纳,获得10
2分钟前
zhangjinchao完成签到,获得积分20
2分钟前
2分钟前
menyu发布了新的文献求助10
2分钟前
文艺的芹菜完成签到,获得积分10
2分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091444
求助须知:如何正确求助?哪些是违规求助? 3630270
关于积分的说明 11507539
捐赠科研通 3341782
什么是DOI,文献DOI怎么找? 1836917
邀请新用户注册赠送积分活动 904789
科研通“疑难数据库(出版商)”最低求助积分说明 822544