Frequency-aware robust multidimensional information fusion framework for remote sensing image segmentation

计算机科学 分割 人工智能 稳健性(进化) 计算机视觉 模式识别(心理学) 相互信息 图像分割 数据挖掘 生物化学 基因 化学
作者
Junyu Fan,Jinjiang Li,Yepeng Liu,Fan Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:129: 107638-107638 被引量:7
标识
DOI:10.1016/j.engappai.2023.107638
摘要

Urban scene image segmentation is an important research area in high-resolution remote sensing image processing. However, due to its complex three-dimensional structure, interference factors such as occlusion, shadow, intra-class inconsistency, and inter-class indistinction affect segmentation performance. Many methods have combined local and global information using CNNs and Transformers to achieve high performance in remote sensing image segmentation tasks. However, these methods are not stable when dealing with these interference factors. Recent studies have found that semantic segmentation is highly sensitive to frequency information, so we introduced frequency information to make the model learn more comprehensively about different categories of targets from multiple dimensions. By modeling the target with local features, global information, and frequency information, the target features can be learned in multiple dimensions to reduce the impact of interference factors on the model and improve its robustness. In this paper, we consider frequency information in addition to combining CNNs and Transformers for modeling and propose a Multidimensional Information Fusion Network (MIFNet) for high-resolution remote sensing image segmentation of urban scenes. Specifically, we design an information fusion Transformer module that can adaptively associate local features, global semantic information, and frequency information and a relevant semantic aggregation module for aggregating features at different scales to construct the decoder. By aggregating image features at different depths, the specific representation of the target and the correlation between targets can be modeled in multiple dimensions, allowing the network to better recognize and understand the features of each class of targets to resist various interference factors that affect segmentation performance. We conducted extensive ablation experiments and comparative experiments on the ISPRS Vaihingen and ISPRS Potsdam benchmarks to verify our proposed method. In a large number of experiments, our method achieved the best results, with 84.53% and 87.3% mIoU scores on the Vaihingen and Potsdam datasets, respectively, proving the superiority of our method. The source code will be available at https://github.com/JunyuFan/MIFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
仇书竹完成签到,获得积分10
刚刚
爱哭的小羽完成签到,获得积分10
2秒前
酷波er应助code_Z采纳,获得30
2秒前
筱宸发布了新的文献求助10
2秒前
3秒前
不要长胖发布了新的文献求助10
4秒前
4秒前
雪莉发布了新的文献求助10
5秒前
imcwj完成签到 ,获得积分10
6秒前
辣辣发布了新的文献求助10
7秒前
8秒前
10秒前
李学谦发布了新的文献求助10
10秒前
从容宛海发布了新的文献求助10
10秒前
是赵先森呀完成签到 ,获得积分10
11秒前
万能图书馆应助高君奇采纳,获得10
11秒前
天天快乐应助lm00024采纳,获得10
12秒前
13秒前
大个应助筱宸采纳,获得10
13秒前
cherish发布了新的文献求助10
15秒前
专注的翠彤完成签到,获得积分20
15秒前
只只呀发布了新的文献求助10
16秒前
糕糕完成签到,获得积分10
17秒前
搜集达人应助采玉采纳,获得10
17秒前
18秒前
橙子完成签到,获得积分10
19秒前
着急的雁露完成签到,获得积分20
19秒前
luca发布了新的文献求助50
20秒前
20秒前
21秒前
22秒前
22秒前
22秒前
25秒前
25秒前
耍酷千山发布了新的文献求助10
26秒前
ZZhung234完成签到,获得积分20
26秒前
Greetdawn完成签到,获得积分10
26秒前
冷艳的鞯发布了新的文献求助10
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635