Domain Adaptive Driver Distraction Detection Based on Partial Feature Alignment and Confusion-Minimized Classification

分散注意力 计算机科学 混乱 领域(数学分析) 人工智能 特征(语言学) 域适应 特征提取 模式识别(心理学) 计算机视觉 心理学 数学 认知心理学 哲学 数学分析 分类器(UML) 语言学 精神分析
作者
Guofa Li,Guanglei Wang,Zizheng Guo,Qing Liu,Xiyuan Luo,Bangwei Yuan,Mingrui Li,Lu Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 11227-11240 被引量:1
标识
DOI:10.1109/tits.2024.3367665
摘要

The increased use of smartphones and in-vehicle infotainment systems leads to more distraction related accidents. Although numerous deep learning techniques have been developed to identify driver distraction based on images, they often perform poorly or even fail in cross-domain conditions. Retraining models on the target domain is a traditional solution, but it requires a significant number of manually annotated data, time, and computer resources. Therefore, this paper proposes a distance-based domain-adaptive approach for global feature matching. It lowers the $\boldmath{\mathcal{H}}$ -divergence at the feature level for cross-domain classification. Specifically, a domain-adaptive algorithm is developed based on partial minimum classification confusion (PMCC) matching. The proposed method first predicts target image category weights using a classification network, and then regularizes them by minimizing the classification confusion. It subsequently employs the regularized category weights as pseudo-labels for target domain images, which are then aligned with identically labelled source domain image features. Three cross-domain distracted driving datasets are used to examine the proposed method, including State-farm, AUC-Real and AUC-Laboratory. The results show that our proposed strategy performs better than the state-of-the-art approaches, which provides a solution to further improve distraction detection performance in various situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
1秒前
kirirto完成签到,获得积分10
2秒前
苏玉成完成签到 ,获得积分10
3秒前
小木得霖发布了新的文献求助10
3秒前
ccmxigua完成签到,获得积分10
3秒前
Martin完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
7秒前
9秒前
额ee完成签到,获得积分10
10秒前
爆米花应助zzz采纳,获得10
10秒前
可可发布了新的文献求助10
10秒前
3D发布了新的文献求助10
11秒前
12秒前
斯文败类应助小木得霖采纳,获得10
12秒前
雪白的紫翠应助月光族采纳,获得10
12秒前
13秒前
西西发布了新的文献求助10
14秒前
Ok完成签到 ,获得积分10
14秒前
小恐龙飞飞完成签到 ,获得积分10
16秒前
爆米花应助ticky采纳,获得10
18秒前
antonx应助kunkun采纳,获得10
18秒前
xiaxiao应助sssane采纳,获得100
19秒前
小跳发布了新的文献求助10
19秒前
默然回首发布了新的文献求助10
21秒前
香蕉觅云应助愉快的丹雪采纳,获得10
22秒前
23秒前
苗条馒头完成签到,获得积分10
24秒前
费飞扬完成签到,获得积分10
25秒前
含糊的凤灵完成签到,获得积分20
26秒前
zcious完成签到,获得积分10
27秒前
魏戎儿发布了新的文献求助30
27秒前
28秒前
1111完成签到,获得积分10
28秒前
长弓橙子完成签到,获得积分10
30秒前
小跳完成签到,获得积分10
31秒前
紫熊完成签到,获得积分10
33秒前
丘比特应助superworm1采纳,获得10
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803200
求助须知:如何正确求助?哪些是违规求助? 3348381
关于积分的说明 10338132
捐赠科研通 3064392
什么是DOI,文献DOI怎么找? 1682571
邀请新用户注册赠送积分活动 808249
科研通“疑难数据库(出版商)”最低求助积分说明 764034