Lipid bilayer regulation of cochlear hair cells involves transmembrane channel-like proteins

脂质双层 跨膜蛋白 生物物理学 化学 细胞生物学 毛细胞 离子通道 频道(广播) 内耳 生物 神经科学 生物化学 计算机科学 电信 受体
作者
Sheela George,Anthony J. Ricci
出处
期刊:Biophysical Journal [Elsevier BV]
卷期号:123 (3): 506a-506a
标识
DOI:10.1016/j.bpj.2023.11.3060
摘要

Auditory mechanotransduction occurs in the hair bundle, an organelle composed of rows of linked stereocilia that increase in height in a staircase-like manner. Hair bundle deflection exerts force onto the tip link that is translated to mechanically gated (MET) ion channels located at the tops of the shorter stereocilia. There is a limited but growing body of data suggesting that stereocilia membrane properties modulate MET channels. Transmembrane channel-like proteins (TMCs) are considered part of the MET channel machinery, but also may have membrane scramblase activity that regulates membrane homeostasis in hair cells. To further investigate the role of the membrane in modulating MET channels, we used a novel viscosity sensor BODIPY1c. The lifetime changes of BODIPY1c correlate with viscosity allowing precise spatial and dynamic monitoring of membrane properties within live hair cells. We found that BODIPY1c can enter hair cells through MET channels and fluorescently label the cytoplasmic membranes, thus allowing identification of hair cells with functional MET channels. We show that both stereocilia and soma membrane viscosity of mammalian cochlear hair cells vary during development. Membrane viscosity decreases and strongly correlates with the onset of MET. TMIE and TMC1 mutant mice, both of which lack TMC1 in stereocilia, have significantly higher membrane viscosity compared to litter mate controls at P10. In TMC1 mutants, the stereocilia membrane viscosity strongly correlates to the intracellular intensity of BODIPY1c. Together these data suggest that the membrane viscosity of the stereocilia and hair cell soma undergoes developmental changes that correlated strongly with the onset of MET. Lack of TMC1 and TMIE inhibits these developmental changes to the membrane. Further studies are ongoing to determine the functional relevance of TMCs in regulating membrane mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮的绝山完成签到,获得积分10
1秒前
54发布了新的文献求助10
4秒前
souther完成签到,获得积分0
7秒前
lsn完成签到,获得积分10
7秒前
共享精神应助凯哄哄采纳,获得10
7秒前
矛头蝮应助千十一采纳,获得10
8秒前
大黄发布了新的文献求助10
10秒前
威武的妍完成签到,获得积分10
12秒前
12秒前
14秒前
15秒前
15秒前
半生误余完成签到,获得积分10
16秒前
16秒前
易槐发布了新的文献求助10
17秒前
18秒前
Serendipity应助大黄采纳,获得10
19秒前
cwm发布了新的文献求助10
19秒前
4645发布了新的文献求助10
20秒前
20秒前
21秒前
科研通AI5应助xixixi采纳,获得10
21秒前
谨慎长颈鹿完成签到,获得积分10
22秒前
23秒前
23秒前
26秒前
27秒前
28秒前
大个应助runtang采纳,获得30
28秒前
科研通AI2S应助羲和采纳,获得10
29秒前
heyujie完成签到,获得积分10
29秒前
852应助半生误余采纳,获得30
30秒前
香蕉觅云应助歪歪踢采纳,获得10
31秒前
hxnz2001发布了新的文献求助20
31秒前
32秒前
Jasper应助科研小菜鸡采纳,获得10
32秒前
饭胖胖发布了新的文献求助10
32秒前
晚棠发布了新的文献求助10
32秒前
33秒前
xixixi完成签到,获得积分10
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195813
求助须知:如何正确求助?哪些是违规求助? 3731545
关于积分的说明 11752177
捐赠科研通 3406120
什么是DOI,文献DOI怎么找? 1868842
邀请新用户注册赠送积分活动 924975
科研通“疑难数据库(出版商)”最低求助积分说明 835593