Improved estimation of SPAD values in walnut leaves by combining spectral, texture, and structural information from UAV-based multispectral image

多光谱图像 精准农业 天蓬 随机森林 叶绿素 人工智能 遥感 计算机科学 环境科学 数学 生物 植物 地理 考古 农业
作者
Renjun Wang,Nigela Tuerxun,Jianghua Zheng
出处
期刊:Scientia Horticulturae [Elsevier]
卷期号:328: 112940-112940 被引量:21
标识
DOI:10.1016/j.scienta.2024.112940
摘要

An important measure to describe the physiological status of vegetation is the chlorophyll concentration of the vegetation. For managing fields in precision agriculture, monitoring walnut growth, and estimating production, accurate determination of chlorophyll content is crucial. Spectral indices play a crucial role in the non-destructive and efficient monitoring of crop physiological parameters, especially in estimating chlorophyll content. However, spectral indices have low sensitivity to high chlorophyll levels and are susceptible to interference from background signals, which may result in decreased stability of the model. The unmanned aerial vehicle (UAV) captures high-resolution images that contain abundant spatial information, including texture and structural information. These spatial information can reflect crop canopy structure, may help to improve the estimation precision of crop chlorophyll content. However, research on utilizing drone-based spatial information for estimating crop chlorophyll content is relatively limited. The aim of this study is to explore the potential of integrating spectral, textural, and structural information to improve the accuracy of walnut leaf chlorophyll content estimation. This study used a drone equipped with a multispectral camera to capture images of walnut tree canopies. Based on these images, we extracted 17 spectral indices, 8 texture indices, and 5 structural indices. Then, we applied the Boruta algorithm to select the optimal spectral, texture, and structural indices, as well as their combinations. Finally, the SPAD (Soil and plant analyzer development) values estimation model for walnut leaves was established using the Decision Tree Regression (DTR), Random Forest Regression (RFR), and Extreme Gradient Boosting (XGBoost) methods. The research findings indicate that the accuracy of SPAD values estimation model constructed by combining remote sensing indices (spectral indices (SI), texture indices (TI) and structural indices (STI) are combined in pairwise or in full) is better than that of single remote sensing indices. In the combined remote sensing indices models, the accuracy of the model constructed by the pairwise combination of three remote sensing indices is relatively limited. However, when using the combination of spectral indices, texture indices, and structural indices, the estimation accuracy of SPAD values for walnut leaves can be effectively improved, and this combination is considered the best way to estimate SPAD values. Furthermore, among the trio of SPAD values estimation models considered (namely DTR, RFR, and XGBoost), the XGBoost model exhibited superior performance. Notably, when combining SI+TI+STI in the construction of the XGBoost model, it demonstrated the highest level of accuracy in estimating SPAD values (Training: R2T =0.95, RMSET=1.08; Validation: R2v = 0.72, RMSEv=2.13). The findings of this research elucidate that the incorporation of spatial information from UAV multispectral imagery facilitates the monitoring of physiological parameters in walnut trees. By integrating the spatial and spectral information of UAV multispectral imagery, a feasible and accurate estimation method has been provided for monitoring the chlorophyll content in walnut leaves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小栾完成签到,获得积分10
刚刚
菜菜完成签到,获得积分10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
昏昏应助科研通管家采纳,获得10
3秒前
3秒前
zz完成签到,获得积分10
4秒前
6秒前
6秒前
ysy发布了新的文献求助10
8秒前
高高万天完成签到,获得积分10
8秒前
9秒前
腼腆的薯片完成签到 ,获得积分10
10秒前
10秒前
orixero应助Young_Lee采纳,获得10
10秒前
11秒前
一一发布了新的文献求助10
12秒前
張医铄发布了新的文献求助10
13秒前
13秒前
李爱国应助Lin采纳,获得10
15秒前
avalanche应助超级蘑菇采纳,获得30
16秒前
JamesPei应助缥缈老九采纳,获得10
16秒前
岳凯完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453804
求助须知:如何正确求助?哪些是违规求助? 4561313
关于积分的说明 14282182
捐赠科研通 4485290
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447348
关于科研通互助平台的介绍 1422701