化学
光谱学
联轴节(管道)
共振(粒子物理)
耦合
核磁共振波谱
物理化学
分析化学(期刊)
核磁共振
原子物理学
立体化学
物理
量子力学
有机化学
机械工程
工程类
作者
Yi Ji,Kuizhi Chen,Xiuwen Han,Xinhe Bao,Guangjin Hou
摘要
Despite the extensive industrial and research interests in zeolites, their intrinsic catalytic nature is not fully understood due to the complexity of the hydroxyl-aluminum moieties. 17O NMR would provide irreplaceable opportunities for much-needed fine structural determination given the ubiquitous presence of oxygen atoms in nearly all species; however, the low sensitivity and quadrupolar nature of oxygen-17 make its NMR spectroscopic elucidation challenging. Here, we show that state-of-the-art double resonance solid-state NMR techniques have been combined with spectral editing methods based on scalar (through-bond) and dipolar (through-space) couplings, which allowed us to address the subtle protonic structures in zeolites. Notably, the often-neglected and undesired second-order quadrupolar-dipolar cross-term interaction ("2nd-QD interaction") can actually be exploited and can help gain invaluable information. Eventually, a comprehensive set of 1H-17O/1H-27Al double resonance NMR with J-/D-coupling spectral editing techniques have been designed in this work and enabled us to reveal atomic-scale precise structural and dynamical details in zeolites including: 1) The jump rate of the bridging acid site (BAS) proton is relatively low, i.e., far less than 100 s-1 at room temperature. 2) The Al-OH groups with 1H chemical shift at 2.6-2.8 ppm, at least for nonseverely dealuminated H-ZSM-5 catalysts, exhibit a rigid bridging environment similar to that of BAS. 3) The Si-OH groups at 2.0 ppm are not hydrogen bonded and undergo fast cone-rotational motion. The results in this study predict the 2nd-QD interaction to be universal for any rigid -17O-H environment, such as those in metal oxide surfaces or biomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI