Graph Convolutional Networks With Adaptive Neighborhood Awareness

计算机科学 人工智能 图形 卷积神经网络 模式识别(心理学) 机器学习 理论计算机科学
作者
Mingjian Guang,Chungang Yan,Yuhua Xu,Junli Wang,Changjun Jiang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (11): 7392-7404 被引量:8
标识
DOI:10.1109/tpami.2024.3391356
摘要

Graph convolutional networks (GCNs) can quickly and accurately learn graph representations and have shown powerful performance in many graph learning domains. Despite their effectiveness, neighborhood awareness remains essential and challenging for GCNs. Existing methods usually perform neighborhood-aware steps only from the node or hop level, which leads to a lack of capability to learn the neighborhood information of nodes from both global and local perspectives. Moreover, most methods learn the nodes' neighborhood information from a single view, ignoring the importance of multiple views. To address the above issues, we propose a multi-view adaptive neighborhood-aware approach to learn graph representations efficiently. Specifically, we propose three random feature masking variants to perturb some neighbors' information to promote the robustness of graph convolution operators at node-level neighborhood awareness and exploit the attention mechanism to select important neighbors from the hop level adaptively. We also utilize the multi-channel technique and introduce a proposed multi-view loss to perceive neighborhood information from multiple perspectives. Extensive experiments show that our method can better obtain graph representation and has high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
叶立军发布了新的文献求助10
1秒前
典雅的凝芙完成签到,获得积分10
1秒前
Delta应助zzy采纳,获得20
2秒前
大樗完成签到,获得积分10
3秒前
3秒前
阿清应助科研通管家采纳,获得10
3秒前
夕诙应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
3秒前
琛哥物理发布了新的文献求助10
3秒前
所所应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
夕诙应助科研通管家采纳,获得20
4秒前
hzhang0807发布了新的文献求助10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
嘉嘉应助科研通管家采纳,获得10
4秒前
40应助帅气凝云采纳,获得10
4秒前
思源应助HuiJN采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
姚佳麒发布了新的文献求助10
5秒前
跑跑完成签到,获得积分10
6秒前
不安的硬币完成签到,获得积分10
6秒前
Moe完成签到,获得积分10
6秒前
Wei完成签到,获得积分10
7秒前
禾木应助阿程采纳,获得10
8秒前
桐桐应助京莫采纳,获得10
8秒前
zsy666发布了新的文献求助10
9秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4108675
求助须知:如何正确求助?哪些是违规求助? 3646863
关于积分的说明 11551815
捐赠科研通 3352773
什么是DOI,文献DOI怎么找? 1842192
邀请新用户注册赠送积分活动 908446
科研通“疑难数据库(出版商)”最低求助积分说明 825578