Taylor Approximation of Inventory Policies for One-Warehouse, Multi-Retailer Systems with Demand Feature Information

仓库 特征(语言学) 计算机科学 运筹学 库存管理 业务 微观经济学 产业组织 运营管理 经济 营销 数学 语言学 哲学
作者
Jingkai Huang,Kevin Shang,Yi Yang,Weihua Zhou,Yuan Li
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2021.04241
摘要

We consider a distribution system in which retailers replenish perishable goods from a warehouse, which, in turn, replenishes from an outside source. Demand at each retailer depends on exogenous features and a random shock, and unfulfilled demand is lost. The objective is to obtain a data-driven replenishment and allocation policy that minimizes the average inventory cost per time period. The extant data-driven methods either cannot guarantee a feasible solution for out-of-sample feature observations or generate one with excessive computational time. We propose a policy that resolves these issues in two steps. In the first step, we assume that the distributions of features and random shocks are known. We develop an effective heuristic policy by using Taylor expansion to approximate the retailer’s inventory cost. The resulting solution is closed-form, referred to as Taylor Approximation (TA) policy. We show that the TA policy is asymptotically optimal in the number of retailers. In the second step, we apply the linear quantile regression and kernel density estimation to the TA solution to obtain the data-driven policy called Data-Driven Taylor Approximation (DDTA) policy. We prove that the DDTA policy is consistent with the TA policy. A numerical study shows that the DDTA policy is very effective. Using a real data set provided by Fresh Hema, we show that the DDTA policy reduces the average cost by 11.0% compared with Hema’s policy. Finally, we show that the main results still hold in the cases of correlated demand features, positive lead times, and censored demand. This paper was accepted by J. George Shanthikumar, data science. Funding: Y. Yang acknowledges financial support from the NSFC [Grants 72125004, 71821002]. W. Zhou acknowledges financial support from the NSFC [Grants 72192823, 71821002]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04241 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JXL发布了新的文献求助10
1秒前
znn发布了新的文献求助10
1秒前
liyudan发布了新的文献求助30
2秒前
二东完成签到,获得积分10
2秒前
十一玮发布了新的文献求助10
2秒前
灰烬完成签到,获得积分10
3秒前
Zoe_Zhang发布了新的文献求助10
3秒前
dyf完成签到 ,获得积分20
4秒前
GPTea应助Zq采纳,获得20
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
WangKaka发布了新的文献求助10
5秒前
6秒前
Aurora完成签到 ,获得积分10
6秒前
课桌上刻着我们的青春完成签到,获得积分10
7秒前
7秒前
科研通AI6应助友利奈绪采纳,获得10
8秒前
英俊的铭应助DIDIDI采纳,获得10
9秒前
znn完成签到,获得积分10
9秒前
co发布了新的文献求助10
10秒前
10秒前
小蘑菇应助JXL采纳,获得10
10秒前
竹子完成签到,获得积分10
10秒前
12秒前
12秒前
慧敏应助阳地黄采纳,获得80
12秒前
13秒前
13秒前
FashionBoy应助小月Anna采纳,获得20
15秒前
oldfive发布了新的文献求助10
15秒前
zjj驳回了Lucas应助
15秒前
16秒前
徐江发布了新的文献求助10
16秒前
JamesPei应助cc采纳,获得10
16秒前
Sujie发布了新的文献求助10
17秒前
牛马发布了新的文献求助10
17秒前
17秒前
18秒前
春山完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703854
求助须知:如何正确求助?哪些是违规求助? 4071125
关于积分的说明 12588699
捐赠科研通 3771729
什么是DOI,文献DOI怎么找? 2083322
邀请新用户注册赠送积分活动 1110535
科研通“疑难数据库(出版商)”最低求助积分说明 988364