Inferring molecular inhibition potency with AlphaFold predicted structures

效力 计算生物学 计算机科学 生物信息学 生物 遗传学 体外
作者
Pedro F. Oliveira,Rita C. Guedes,André O. Falcão
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-58394-z
摘要

Even though in silico drug ligand-based methods have been successful in predicting interactions with known target proteins, they struggle with new, unassessed targets. To address this challenge, we propose an approach that integrates structural data from AlphaFold 2 predicted protein structures into machine learning models. Our method extracts 3D structural protein fingerprints and combines them with ligand structural data to train a single machine learning model. This model captures the relationship between ligand properties and the unique structural features of various target proteins, enabling predictions for never before tested molecules and protein targets. To assess our model, we used a dataset of 144 Human G-protein Coupled Receptors (GPCRs) with over 140,000 measured inhibition constants (Ki) values. Results strongly suggest that our approach performs as well as state-of-the-art ligand-based methods. In a second modeling approach that used 129 targets for training and a separate test set of 15 different protein targets, our model correctly predicted interactions for 73% of targets, with explained variances exceeding 0.50 in 22% of cases. Our findings further verified that the usage of experimentally determined protein structures produced models that were statistically indistinct from the Alphafold synthetic structures. This study presents a proteo-chemometric drug screening approach that uses a simple and scalable method for extracting protein structural information for usage in machine learning models capable of predicting protein-molecule interactions even for orphan targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟迟完成签到 ,获得积分10
1秒前
山水之乐发布了新的文献求助30
2秒前
研友_Zrlk7L发布了新的文献求助10
2秒前
一一发布了新的文献求助10
4秒前
4秒前
pxh发布了新的文献求助10
4秒前
Lucas应助小陈1122采纳,获得10
5秒前
Tiamo完成签到,获得积分10
6秒前
7秒前
shuhaha发布了新的文献求助30
8秒前
123发布了新的文献求助10
9秒前
大模型应助okey采纳,获得10
10秒前
风清扬应助哈哈哈采纳,获得10
10秒前
华新完成签到,获得积分10
11秒前
deway发布了新的文献求助10
11秒前
比巴卜发布了新的文献求助10
13秒前
心有猛虎完成签到,获得积分10
14秒前
16秒前
16秒前
tea发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
内向莛完成签到,获得积分10
18秒前
嘿嘿应助比巴卜采纳,获得10
19秒前
ArenasZ发布了新的文献求助10
19秒前
lixiao完成签到,获得积分10
19秒前
yuyu完成签到,获得积分10
20秒前
仲夏十八完成签到,获得积分10
21秒前
Liu发布了新的文献求助10
21秒前
小橙子应助Lm采纳,获得20
23秒前
银色的溪水完成签到 ,获得积分10
23秒前
隐形曼青应助哈哈哈采纳,获得10
25秒前
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
七月流火应助科研通管家采纳,获得10
26秒前
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4059574
求助须知:如何正确求助?哪些是违规求助? 3597920
关于积分的说明 11429463
捐赠科研通 3322707
什么是DOI,文献DOI怎么找? 1826895
邀请新用户注册赠送积分活动 897538
科研通“疑难数据库(出版商)”最低求助积分说明 818517