Inferring molecular inhibition potency with AlphaFold predicted structures

效力 计算生物学 计算机科学 生物信息学 生物 遗传学 体外
作者
Pedro F. Oliveira,Rita C. Guedes,André O. Falcão
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-58394-z
摘要

Even though in silico drug ligand-based methods have been successful in predicting interactions with known target proteins, they struggle with new, unassessed targets. To address this challenge, we propose an approach that integrates structural data from AlphaFold 2 predicted protein structures into machine learning models. Our method extracts 3D structural protein fingerprints and combines them with ligand structural data to train a single machine learning model. This model captures the relationship between ligand properties and the unique structural features of various target proteins, enabling predictions for never before tested molecules and protein targets. To assess our model, we used a dataset of 144 Human G-protein Coupled Receptors (GPCRs) with over 140,000 measured inhibition constants (Ki) values. Results strongly suggest that our approach performs as well as state-of-the-art ligand-based methods. In a second modeling approach that used 129 targets for training and a separate test set of 15 different protein targets, our model correctly predicted interactions for 73% of targets, with explained variances exceeding 0.50 in 22% of cases. Our findings further verified that the usage of experimentally determined protein structures produced models that were statistically indistinct from the Alphafold synthetic structures. This study presents a proteo-chemometric drug screening approach that uses a simple and scalable method for extracting protein structural information for usage in machine learning models capable of predicting protein-molecule interactions even for orphan targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dachengzi完成签到,获得积分10
1秒前
动人的念真完成签到,获得积分20
2秒前
小蘑菇应助zx采纳,获得10
2秒前
脑洞疼应助沙子采纳,获得10
5秒前
丘比特应助飘逸数据线采纳,获得10
5秒前
完美元柏发布了新的文献求助10
5秒前
lh发布了新的文献求助10
7秒前
Lizeth完成签到,获得积分10
8秒前
9秒前
yan应助简单以宁2采纳,获得10
9秒前
科研通AI5应助简单以宁2采纳,获得10
9秒前
daijk完成签到,获得积分10
10秒前
斯文败类应助ys采纳,获得10
10秒前
1234完成签到 ,获得积分10
12秒前
13秒前
莉莉酱完成签到,获得积分10
14秒前
14秒前
香蕉觅云应助sdl采纳,获得10
14秒前
14秒前
15秒前
Acuity发布了新的文献求助20
16秒前
16秒前
17秒前
大卷应助李子涵采纳,获得10
18秒前
ys完成签到,获得积分20
18秒前
18秒前
zx发布了新的文献求助10
18秒前
童宝发布了新的文献求助10
19秒前
gveixbsiw发布了新的文献求助10
19秒前
Lan完成签到 ,获得积分10
20秒前
20秒前
20秒前
nnn完成签到,获得积分20
21秒前
21秒前
Ljc发布了新的文献求助10
22秒前
MrSCI99完成签到 ,获得积分20
22秒前
22秒前
nnn发布了新的文献求助10
24秒前
mingzzz1发布了新的文献求助10
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838587
求助须知:如何正确求助?哪些是违规求助? 3380942
关于积分的说明 10516287
捐赠科研通 3100475
什么是DOI,文献DOI怎么找? 1707527
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772949