Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson's ratio

泊松分布 泊松比 反向 超材料 材料科学 纵横比(航空) 计算机科学 拓扑(电路) 统计物理学 数学优化 算法 数学 几何学 物理 复合材料 统计 光电子学 组合数学
作者
Jie Tian,Keke Tang,Xianyan Chen,Xianqiao Wang
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:14 (35): 12677-12691 被引量:34
标识
DOI:10.1039/d2nr02509d
摘要

With the aid of recent efficient and prior knowledge-free machine learning (ML) algorithms, extraordinary mechanical properties such as negative Poisson's ratio have extensively promoted the diverse designs of metamaterials with distinctive cellular structures. However, most existing ML approaches applied to the design of metamaterials are primarily based on a single property value with the assumption that the Poisson's ratio of a material is stationary, neglecting the dynamic variability of Poisson's ratio, termed deformation-dependent Poisson's ratio, during the loading process that a metamaterial other than conventional materials may experience. This paper first proposes a crystallographic symmetry-based methodology to build 2D metamaterials with complex but patterned topological structures, and then converts them into computational models suitable for molecular dynamics simulations. Then, we employ an integrated approach, consisting of molecular dynamics simulations capable of generating and collecting a large dataset for training/validation, in addition to ML algorithms (CNN and Cycle-GAN) able to predict the dynamic characteristics of Poisson's ratio and offer the inverse design of a metamaterial structure based on a target quasi-continuous Poisson's ratio-strain curve, to eventually unravel the underlying mechanism and design principles of 2D metamaterial structures with tunable Poisson's ratio. The close match between the predefined Poisson's ratio response and that from the generated structure validates the feasibility of the proposed ML model. Owing to the high efficiency and complete independence from prior knowledge, our proposed approach offers a novel and robust technique for the prediction and inverse design of metamaterial structures with tailored deformation-dependent Poisson's ratio, an unprecedented property attractive in flexible electronics, soft robotics, and nanodevices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1LDan发布了新的文献求助30
刚刚
归尘应助April采纳,获得10
1秒前
小心完成签到 ,获得积分10
1秒前
难过的丹烟完成签到,获得积分10
4秒前
6秒前
十三完成签到 ,获得积分10
6秒前
7秒前
L.C.发布了新的文献求助10
10秒前
10秒前
水手_发布了新的文献求助10
11秒前
12秒前
顾矜应助L.C.采纳,获得10
13秒前
librahapper发布了新的文献求助10
15秒前
15秒前
归尘应助April采纳,获得10
16秒前
我要读博完成签到,获得积分10
16秒前
水手_完成签到,获得积分10
16秒前
霍师傅发布了新的文献求助10
17秒前
L.C.完成签到,获得积分10
19秒前
21秒前
Annie完成签到,获得积分10
21秒前
桐桐应助乐观的花生采纳,获得10
23秒前
FashionBoy应助霍师傅采纳,获得10
25秒前
liangxt发布了新的文献求助10
26秒前
27秒前
28秒前
29秒前
xiaopan9083发布了新的文献求助10
31秒前
四夕完成签到 ,获得积分10
33秒前
sparkle发布了新的文献求助10
33秒前
34秒前
Leeu完成签到,获得积分10
34秒前
科研通AI5应助xiaopan9083采纳,获得10
37秒前
1LDan完成签到,获得积分20
38秒前
41秒前
rrrrroxie应助wendinfgmei采纳,获得30
42秒前
归尘应助April采纳,获得10
43秒前
顺心牛排发布了新的文献求助10
46秒前
47秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385