Improving the prediction of protein stability changes upon mutations by geometric learning and a pre-training strategy

概化理论 人工智能 理论(学习稳定性) 水准点(测量) 计算机科学 机器学习 训练集 适应度函数 深度学习 相关性 试验数据 数学 遗传算法 统计 大地测量学 几何学 程序设计语言 地理
作者
Yunxin Xu,Ди Лю,Haipeng Gong
标识
DOI:10.1101/2023.05.28.542668
摘要

A bstract Accurate prediction of the fitness and stability of a protein upon mutations is of high importance in protein engineering and design. Despite the rapid development of deep learning techniques and accumulation of experimental data, the multi-labeled nature of fitness data hinders the training of robust deep-learning-based models for the fitness and stability prediction tasks. Here, we propose three geometric-learning-based models, GeoFitness, GeoDDG and GeoDTm, for the prediction of the fitness score, ΔΔ G and Δ T m of a protein upon mutations, respectively. In the optimization of GeoFitness, we designed a novel loss function to allow supervised training of a unified model using the large amount of multi-labeled fitness data in the deep mutational scanning (DMS) database. By this means, GeoFitness efficiently learns the general functional effects of protein mutations and achieves better performance over the other state-of-the-art methods. To further improve the downstream tasks of ΔΔ G /Δ T m prediction, we re-utilized the encoder of GeoFitness as a pre-trained module in GeoDDG and GeoDTm to overcome the challenge of lack of sufficient amount of specifically labeled data. This pre-training strategy in combination with data expansion remarkably improves model performance and generalizability. When evaluated on the benchmark test sets (S669 for ΔΔ G prediction and a newly collected set S571 for Δ T m prediction), GeoDDG and GeoDTm outperform the other state-of-the-art methods by at least 30% and 70%, respectively, in terms of the Spearman correlation coefficient between predicted and experimental values. An online server for the suite of these three predictors, GeoStab-suite, is available at http://structpred.life.tsinghua.edu.cn/server_geostab.html .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小杭76应助KInn采纳,获得10
1秒前
Owen应助十八鱼采纳,获得10
2秒前
浮游应助lxjjj采纳,获得10
2秒前
3秒前
3秒前
秦可可发布了新的文献求助10
3秒前
3秒前
5秒前
iris发布了新的文献求助10
5秒前
824完成签到,获得积分10
6秒前
桐桐应助熊二采纳,获得10
7秒前
顾瑶发布了新的文献求助10
10秒前
i7发布了新的文献求助10
11秒前
HN洪发布了新的文献求助10
12秒前
popooo完成签到,获得积分10
12秒前
yundong完成签到,获得积分10
12秒前
刘智豪完成签到,获得积分10
13秒前
秦可可完成签到,获得积分20
13秒前
ch完成签到,获得积分10
13秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
zhounini1989应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得30
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得150
16秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
汉堡包应助哈基米采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
称心曼安应助科研通管家采纳,获得10
17秒前
zcl应助科研通管家采纳,获得150
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
DijiaXu应助科研通管家采纳,获得10
17秒前
17秒前
浮游应助大水牛姐姐采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262