Revolutionizing Epithelial Differentiability Analysis in Small Airway-on-a-Chip Models Using Label-Free Imaging and Computational Techniques

计算机科学 深度学习 人工智能 图像处理 粘液纤毛清除率 气道 机器学习 嵌入式系统 图像(数学) 医学 外科 内科学
作者
Shiue-Luen Chen,Ren‐Hao Xie,Chong‐You Chen,Jia‐Wei Yang,Kuan Yu Hsieh,Xin-Yi Liu,Jiayi Xin,Chih-Ming Kung,Johnson Chung,Guan‐Yu Chen
出处
期刊:Biosensors [Multidisciplinary Digital Publishing Institute]
卷期号:14 (12): 581-581 被引量:1
标识
DOI:10.3390/bios14120581
摘要

Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, we propose a label-free morphology imaging platform compatible with the small airway-on-a-chip system. By integrating deep learning and image recognition techniques, we aim to analyze the differentiability of human small airway epithelial cells (HSAECs). Utilizing cell imaging on day 3 of culture, our approach accurately predicts the differentiability of HSAECs after 4 weeks of incubation. This breakthrough significantly enhances the efficiency and stability of establishing small airway-on-a-chip models. To further enhance our analysis capabilities, we have developed a customized MATLAB program capable of automatically processing ciliated cell beating images and calculating the beating frequency. This program enables continuous monitoring of ciliary beating activity. Additionally, we have introduced an automated fluorescent particle tracking system to evaluate the integrity of mucociliary clearance and validate the accuracy of our deep learning predictions. The integration of deep learning, label-free imaging, and advanced image analysis techniques represents a significant advancement in the fields of drug testing and physiological assessment. This innovative approach offers unprecedented insights into the functioning of the small airway epithelium, empowering researchers with a powerful tool to study respiratory physiology and develop targeted interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萤火完成签到,获得积分10
刚刚
文献狂人发布了新的文献求助10
1秒前
NexusExplorer应助肖沐采纳,获得10
2秒前
紧张的含羞草完成签到,获得积分10
2秒前
lanxinge发布了新的文献求助10
2秒前
3秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
卡卡西应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
时冬冬应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
冰魂应助科研通管家采纳,获得20
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
时冬冬应助科研通管家采纳,获得20
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
二枫忆桑完成签到,获得积分10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研路一直绿灯完成签到,获得积分10
6秒前
科研通AI5应助1111采纳,获得10
6秒前
luiii完成签到,获得积分10
7秒前
CBP完成签到,获得积分10
7秒前
minhhuy发布了新的文献求助10
7秒前
zhouyu发布了新的文献求助10
8秒前
8秒前
8秒前
Lucas应助迅速念云采纳,获得10
8秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910