Tensor-Representation-Based Multiview Attributed Graph Clustering With Smooth Structure

聚类分析 图形 代表(政治) 计算机科学 张量(固有定义) 人工智能 数学 模式识别(心理学) 理论计算机科学 纯数学 政治学 政治 法学
作者
Yuan Gao,Qian Zhao,Laurence T. Yang,Jing Yang,Lei Ren
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2025.3526590
摘要

Over the past few years, multiview attributed graph clustering has achieved promising performance via various data augmentation strategies. However, we observe that the aggregation of node information in multilayer graph autoencoder (GAE) is prone to deviation, especially when edges or node attributes are randomly perturbed. To this end, we innovatively propose a tensor-representation-based multiview attributed graph clustering framework with smooth structure (MV_AGC) to avoid the bias caused by random view construction. Specifically, we first design a novel tensor-product-based high-order graph attention network (GAT) with structural constraints to realize efficient attribute fusion and semantic consistency encoding. By imposing attribute augmentation mechanisms and smooth constraints (SCs) on the proposed high-order graph attention autoencoder simultaneously, MV_AGC effectively eliminates the instability of reconstructed graph structures and learns a more compact node representation during training. In addition, we also theoretically analyze the stronger generality and expressiveness of the proposed tensor-product-based attention mechanism over the classical GAT and establish an intuitive connection between them. Furthermore, to address the performance degradation caused by clustering distribution updating, we further develop a simple yet effective clustering objective function-guided self-optimizing module for the final clustering performance improvement. Experimental results on the six benchmark datasets have demonstrated that our proposed method can achieve state-of-the-art clustering performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
prof.zhang发布了新的文献求助10
1秒前
judy完成签到,获得积分10
2秒前
不是一个名字完成签到,获得积分10
3秒前
YifanWang应助shinn采纳,获得10
3秒前
打打应助简单秋烟采纳,获得10
4秒前
4秒前
可可发布了新的文献求助10
5秒前
5秒前
万卷万里完成签到,获得积分10
7秒前
可爱的函函应助徐zhipei采纳,获得10
7秒前
深情飞丹完成签到 ,获得积分10
7秒前
Zenia完成签到,获得积分10
10秒前
可乐加冰发布了新的文献求助10
11秒前
12秒前
13秒前
Jack完成签到,获得积分10
13秒前
onkki完成签到 ,获得积分10
16秒前
16秒前
猎空完成签到,获得积分0
17秒前
凶狠的谷蓝完成签到,获得积分10
17秒前
17秒前
baiquanci完成签到 ,获得积分10
18秒前
倾城发布了新的文献求助10
18秒前
19秒前
传奇3应助seeys采纳,获得10
19秒前
19秒前
20秒前
爱吃冬瓜完成签到,获得积分10
20秒前
20秒前
weilanhaian完成签到 ,获得积分10
22秒前
千千发布了新的文献求助20
22秒前
泡芙完成签到 ,获得积分10
23秒前
超级冰棍发布了新的文献求助10
23秒前
23秒前
自然梦岚完成签到 ,获得积分10
24秒前
田様应助可可采纳,获得10
24秒前
25秒前
周末不上发条完成签到,获得积分10
25秒前
小慈爱鸡完成签到 ,获得积分10
27秒前
阿崔发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3943033
求助须知:如何正确求助?哪些是违规求助? 3488044
关于积分的说明 11046863
捐赠科研通 3218685
什么是DOI,文献DOI怎么找? 1779086
邀请新用户注册赠送积分活动 864519
科研通“疑难数据库(出版商)”最低求助积分说明 799578