Harmonized system code classification using supervised contrastive learning with sentence BERT and multiple negative ranking loss

计算机科学 判决 排名(信息检索) 自然语言处理 人工智能 编码(集合论) 机器学习 程序设计语言 集合(抽象数据类型)
作者
Angga Wahyu Anggoro,Padraig Corcoran,Dennis De Widt,Yuhua Li
出处
期刊:Data technologies and applications [Emerald Publishing Limited]
标识
DOI:10.1108/dta-01-2024-0052
摘要

Purpose International trade transactions, extracted from customs declarations, include several fields, among which the product description and the product category are the most important. The product category, also referred to as the Harmonised System Code (HS code), serves as a pivotal component for determining tax rates and administrative purposes. A predictive tool designed for product categories or HS codes becomes an important resource aiding traders in their decision to choose a suitable code. This tool is instrumental in preventing misclassification arising from the ambiguities present in product nomenclature, thus mitigating the challenges associated with code interpretation. Moreover, deploying this tool would streamline the validation process for government officers dealing with extensive transactions, optimising their workload and enhancing tax revenue collection within this domain. Design/methodology/approach This study introduces a methodology focused on the generation of sentence embeddings for trade transactions, employing Sentence BERT (SBERT) framework in conjunction with the Multiple Negative Ranking (MNR) Loss function following a contrastive learning paradigm. The procedure involves the construction of pairwise samples, including anchors and positive transactions. The proposed method is evaluated using two publicly available real-world datasets, specifically the India Import 2016 and United States Import 2018 datasets, to fine-tune the SBERT model. Several configurations involving pooling strategies, loss functions, and training parameters are explored within the experimental setup. The acquired representations serve as inputs for traditional machine learning algorithms employed in predicting the product categories within trade transactions. Findings Encoding trade transactions utilising SBERT with MNR loss facilitates the creation of enhanced embeddings that exhibit improved representational capacity. These fixed-length embeddings serve as adaptable inputs for training machine learning models, including support vector machine (SVM) and random forest, intended for downstream tasks of HS code classification. Empirical evidence supports the superior performance of our proposed approach compared to fine-tuning transformer-based models in the domain of trade transaction classification. Originality/value Our approach generates more representative sentence embeddings by creating the network architectures from scratch with the SBERT framework. Instead of exploiting a data augmentation method generally used in contrastive learning for measuring the similarity between the samples, we arranged positive samples following a supervised paradigm and determined loss through distance learning metrics. This process involves continuous updating of the Siamese or bi-encoder network to produce embeddings derived from commodity transactions. This strategy aims to ensure that similar concepts of transactions within the same class converge closer within the feature embedding space, thereby improving the performance of downstream tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yao完成签到,获得积分10
1秒前
1秒前
1秒前
俏皮紊发布了新的文献求助10
1秒前
gossie发布了新的文献求助10
2秒前
Tang_Tang发布了新的文献求助10
2秒前
斯文败类应助ccchao采纳,获得10
3秒前
Flac发布了新的文献求助10
4秒前
DLY677完成签到,获得积分10
5秒前
今后应助夏天采纳,获得10
5秒前
peiling发布了新的文献求助10
5秒前
5秒前
qitan完成签到,获得积分10
6秒前
子伊完成签到,获得积分10
6秒前
6秒前
7秒前
深情安青应助drgaoying采纳,获得10
7秒前
可爱的函函应助SweetNanchu采纳,获得10
7秒前
lzp发布了新的文献求助10
7秒前
8秒前
hurb完成签到,获得积分10
8秒前
8秒前
香蕉觅云应助陈欣羽采纳,获得10
9秒前
雪白鸿涛完成签到,获得积分10
9秒前
9秒前
深情安青应助科研NIU采纳,获得10
10秒前
麻果应助peiling采纳,获得10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
子伊发布了新的文献求助10
12秒前
CyrusSo524发布了新的文献求助100
13秒前
Dsivan发布了新的文献求助10
13秒前
biubiudididi完成签到,获得积分10
14秒前
欣晴完成签到,获得积分10
14秒前
酷波er应助123采纳,获得20
15秒前
Chenzhs完成签到,获得积分10
15秒前
lzp完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982042
求助须知:如何正确求助?哪些是违规求助? 3525781
关于积分的说明 11228515
捐赠科研通 3263659
什么是DOI,文献DOI怎么找? 1801594
邀请新用户注册赠送积分活动 879904
科研通“疑难数据库(出版商)”最低求助积分说明 807639