Robust model averaging approach by Mallows-type criterion

估计员 离群值 选型 数学 加权 稳健性(进化) 稳健回归 稳健统计 M-估计量 一致性(知识库) 计算机科学 数学优化 应用数学 统计 医学 生物化学 化学 几何学 基因 放射科
作者
Miaomiao Wang,Kang You,Lixing Zhu,Guohua Zou
出处
期刊:Biometrics [Oxford University Press]
卷期号:80 (4)
标识
DOI:10.1093/biomtc/ujae128
摘要

Model averaging is an important tool for treating uncertainty from model selection process and fusing information from different models, and has been widely used in various fields. However, the most existing model averaging criteria are proposed based on the methods of ordinary least squares or maximum likelihood, which possess high sensitivity to outliers or violation of certain model assumption. For the mean regression, no optimal robust methods are developed. To fill this gap, in our paper, we propose an outlier-robust model averaging approach by Mallows-type criterion. The idea is that we first construct a generalized M (GM) estimator for each candidate model, and then build robust weighting schemes by the asymptotic expansion of the final prediction error based on the GM-type loss function. So, we can still achieve a trustworthy result even if the dataset is contaminated by outliers in response and/or covariates. Asymptotic properties of the proposed robust model averaging estimators are established under some regularity conditions. The consistency of our weight estimators tending to the theoretically optimal weight vectors is also derived. We prove that our model averaging estimator is robust in terms of having bounded influence function. Further, we define the empirical prediction influence function to evaluate the quantitative robustness of the model averaging estimator. A simulation study and a real data analysis are conducted to demonstrate the finite sample performance of our estimators and compare them with other commonly used model selection and averaging methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
ccy完成签到,获得积分20
3秒前
热情的板栗完成签到,获得积分10
3秒前
cai完成签到,获得积分10
4秒前
4秒前
灵巧觅山发布了新的文献求助10
5秒前
动漫大师发布了新的文献求助10
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
李爱国应助乙二胺四乙酸采纳,获得10
6秒前
失眠醉易应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
佰斯特威应助科研通管家采纳,获得10
6秒前
勤恳幻丝发布了新的文献求助10
7秒前
8秒前
tuzi2160完成签到,获得积分10
9秒前
地表最强牛牛完成签到,获得积分10
10秒前
wind200391杨发布了新的文献求助20
11秒前
11秒前
欢喜的跳跳糖完成签到 ,获得积分10
13秒前
科研通AI5应助李浩采纳,获得20
13秒前
不找了完成签到,获得积分10
13秒前
高冷难神完成签到,获得积分10
15秒前
小鑫完成签到 ,获得积分10
16秒前
16秒前
16秒前
灵巧觅山完成签到,获得积分10
16秒前
HEIKU应助翁若翠采纳,获得10
23秒前
liuying2发布了新的文献求助10
23秒前
24秒前
幽默山兰完成签到,获得积分20
24秒前
勤劳的小懒虫完成签到,获得积分10
24秒前
幽默山兰发布了新的文献求助10
29秒前
cai发布了新的文献求助10
31秒前
Rowan完成签到,获得积分10
31秒前
32秒前
liuying2完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324343
关于积分的说明 10218037
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437