脑-机接口
医学
神经外科
神经假体
四肢瘫痪
微刺激
脊髓损伤
脊髓
生物医学工程
外科
物理医学与康复
脑电图
刺激
精神科
内科学
作者
Naoki Ikegaya,Arka N. Mallela,Peter C. Warnke,Nicolas G. Kunigk,Fang Liu,Hunter R. Schone,Ceci Verbaarschot,Nicholas G. Hatsopoulos,John E. Downey,Michael L. Boninger,Robert A. Gaunt,Jennifer L. Collinger,Jorge González-Martínez
标识
DOI:10.3171/2024.7.jns241296
摘要
Precise anatomical implantation of a microelectrode array is fundamental for successful brain-computer interface (BCI) surgery, ensuring high-quality, robust signal communication between the brain and the computer interface. Robotic neurosurgery can contribute to this goal, but its application in BCI surgery has been underexplored. Here, the authors present a novel robot-assisted surgical technique to implant rigid intracortical microelectrode arrays for the BCI. Using this technique, the authors performed surgery in a 31-year-old male with tetraplegia due to a traumatic C4 spinal cord injury that occurred a decade earlier. Each of the arrays was embedded into the parenchyma with a single insertion without complication. Postoperative imaging verified that the devices were placed as intended. With the motor cortex arrays, the participant successfully accomplished 2D control of a virtual arm and hand, with a success rate of 20 of 20 attempts, and recording quality was maintained at 100 and 200 days postimplantation. Intracortical microstimulation of the somatosensory cortex arrays elicited sensations in the fingers and palm. A robotic neurosurgery technique was successfully translated into BCI device implantation as part of an early feasibility trial with the long-term goal of restoring upper-limb function. The technique was demonstrated to be accurate and subsequently contributed to high-quality signal communication.
科研通智能强力驱动
Strongly Powered by AbleSci AI