PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy

人工智能 拟南芥 计算生物学 拟南芥 泛素 计算机科学 生物 机器学习 模式识别(心理学) 突变体 生物化学 基因
作者
Houqiang Wang,Hong Li,Weifeng Gao,Jin Xie
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:658: 114935-114935 被引量:5
标识
DOI:10.1016/j.ab.2022.114935
摘要

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡萝卜z完成签到 ,获得积分10
1秒前
2秒前
2秒前
4秒前
6秒前
ju发布了新的文献求助10
6秒前
SciGPT应助兮兮采纳,获得10
9秒前
猪猪hero发布了新的文献求助10
9秒前
bkagyin应助潘宋采纳,获得10
10秒前
zzz完成签到,获得积分20
11秒前
Lucas应助陈时懿采纳,获得10
12秒前
13秒前
脑洞疼应助cmh采纳,获得10
15秒前
16秒前
彩色忆雪发布了新的文献求助10
16秒前
研友_ZzaKqn完成签到,获得积分0
17秒前
17秒前
科研通AI2S应助阿瓜采纳,获得10
17秒前
chenjzhuc应助阿瓜采纳,获得10
17秒前
赘婿应助布曲采纳,获得10
18秒前
上官若男应助ju采纳,获得10
18秒前
ZGH完成签到,获得积分10
20秒前
22秒前
乐乐发布了新的文献求助10
23秒前
maomao1986完成签到,获得积分10
24秒前
26秒前
画画完成签到,获得积分10
27秒前
充电宝应助酷酷的砖家采纳,获得10
28秒前
科研通AI5应助乐乐采纳,获得10
28秒前
安然完成签到,获得积分10
29秒前
31秒前
赵琪完成签到,获得积分10
32秒前
布曲发布了新的文献求助10
32秒前
情怀应助彩色忆雪采纳,获得10
33秒前
星辰大海应助赵楠采纳,获得10
35秒前
35秒前
35秒前
赵琪发布了新的文献求助10
36秒前
37秒前
RIchard完成签到,获得积分20
39秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801454
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332524
捐赠科研通 3063486
什么是DOI,文献DOI怎么找? 1681751
邀请新用户注册赠送积分活动 807707
科研通“疑难数据库(出版商)”最低求助积分说明 763864