Effect of the mechanical strength on the ion transport in a transition metal lithium halide electrolyte: first-principle calculations

材料科学 卤化物 电解质 锂(药物) 离子 金属锂 无机化学 过渡金属 金属 物理化学 冶金 有机化学 电极 化学 催化作用 医学 内分泌学
作者
Yuan Ren,Changjie Sun,Jingjing Liu,Guojian Cai,Xin Tan,Chao Zhang
出处
期刊:Materials today communications [Elsevier BV]
卷期号:33: 104570-104570 被引量:18
标识
DOI:10.1016/j.mtcomm.2022.104570
摘要

The transition metal lithium halides (such as Li 3 InCl 6 , Li 3 ScCl 6 and Li 3 ErBr 6 ) have high ionic conductivity and good stability with air that can be used as solid electrolyte. However, the effect of mechanical strength on ion transport cannot be ignored in transition metal lithium halides. The relationship between the ion transport and mechanical strength of the transition metal lithium halide solid electrolyte were investigated by the first-principle based density functional theory. The bulk structure was optimized, the mechanical properties and ion transport of the solid electrolyte were analyzed, and the mechanical constants and ideal strength were calculated. The elastic energy band (NEB) method was used to simulate the diffusion of lithium ions in the bulk phase. The results show that Li 3 InCl 6 , Li 3 ScCl 6 and Li 3 ErBr 6 have better ductility, as their bulk shear modulus ratios are all greater than 1.75. The Li 3 ScCl 6 inorganic solid electrolyte with higher shear modulus (7.568 GPa) and tensile stress (3.0885 GPa) is more favorable for inhibiting the growth of lithium dendrites. The Li 3 ScCl 6 has a lower migration energy barrier along the O-T-O channel than that of Li 3 ScCl 6 and Li 3 ErBr 6 in the bulk structure. The energy barrier for lithium ion migration has changed in the channel of the solid electrolyte due to the effect of mechanical strength. The lattice distortion will affect the transport of lithium ions. These results provide comprehensive insights into the practical application of these halides as solid electrolytes. • The mechanics and transport of solid electrolyte are coupled to calculate. • The channel bottleneck of lattice distortion affects transport energy barrier. • The mechanical strength of SSEs inhibits the longitudinal growth of dendrites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cai完成签到,获得积分10
刚刚
刚刚
灵巧觅山发布了新的文献求助10
1秒前
动漫大师发布了新的文献求助10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
李爱国应助乙二胺四乙酸采纳,获得10
2秒前
失眠醉易应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
佰斯特威应助科研通管家采纳,获得10
2秒前
勤恳幻丝发布了新的文献求助10
3秒前
4秒前
tuzi2160完成签到,获得积分10
5秒前
地表最强牛牛完成签到,获得积分10
6秒前
wind200391杨发布了新的文献求助20
7秒前
7秒前
欢喜的跳跳糖完成签到 ,获得积分10
9秒前
科研通AI5应助李浩采纳,获得20
9秒前
不找了完成签到,获得积分10
9秒前
高冷难神完成签到,获得积分10
11秒前
小鑫完成签到 ,获得积分10
12秒前
12秒前
12秒前
灵巧觅山完成签到,获得积分10
12秒前
HEIKU应助翁若翠采纳,获得10
19秒前
liuying2发布了新的文献求助10
19秒前
20秒前
幽默山兰完成签到,获得积分20
20秒前
勤劳的小懒虫完成签到,获得积分10
20秒前
幽默山兰发布了新的文献求助10
25秒前
cai发布了新的文献求助10
27秒前
Rowan完成签到,获得积分10
27秒前
28秒前
liuying2完成签到,获得积分10
29秒前
An完成签到,获得积分10
33秒前
呆呆兽完成签到,获得积分10
33秒前
33秒前
科研通AI5应助ni采纳,获得10
34秒前
呆呆兽发布了新的文献求助200
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324343
关于积分的说明 10218037
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437