Enhancing structural analysis and electromagnetic shielding in carbon foam composites with applications in concrete integrating XGBoost machine learning, carbon nanotubes, and montmorillonite

蒙脱石 电磁屏蔽 复合材料 碳纳米管 材料科学 碳纤维 复合数
作者
Yi Cao,Mohamed Amine Khadimallah,Mohd Ahmed,Hamid Assilzadeh
出处
期刊:Synthetic Metals [Elsevier BV]
卷期号:307: 117656-117656 被引量:3
标识
DOI:10.1016/j.synthmet.2024.117656
摘要

Electromagnetic shielding in carbon foam composites involves using the natural conductivity of carbon foam to block or absorb electromagnetic fields. These composites protect sensitive electronic devices from electromagnetic interference (EMI), which can disrupt or damage their operation. The inclusion of XGBoost machine learning analyzes and optimizes the material compositions for electromagnetic interference shielding. By integrating Carbon Nanotubes (CNTs) and Montmorillonite (MMT) into samples of carbon foam, this research aims to identify the electromagnetic shielding effectiveness (SE), electrical conductivity, and dielectric permittivity at different frequencies of carbon foam composites. This analysis will facilitate the development of enhanced composite materials tailored for effective EMI shielding in concrete environments, particularly in structures housing sensitive electronic equipment. The novelty of this study lies in the dual integration of carbon nanotubes and montmorillonite into carbon foam composites, uniquely exploring their synergistic effects on both mechanical and electrical properties. The study employs XGBoost machine learning to optimize the material compositions for enhanced electromagnetic interference shielding. This study probes the dual integration of CNTs and montmorillonite into carbon foam composites, evaluating their synergistic impact on mechanical and electromagnetic properties. Incorporating 1%, 3%, and 5% of these additives into carbon foams, substantial improvements were recorded in compressive, tensile, and flexural strengths, peaking with a 5% MMT enhancement that nearly doubled the compressive strength from 3.96 MPa to 9.44 MPa. Concurrently, these composites displayed enhanced EMI SE, with detailed electrical characterizations at varying frequencies. Employing XGBoost machine learning, optimal material compositions were derived for EMI shielding, presenting advancements for industrial applications requiring robust structural and electrical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助aura采纳,获得10
5秒前
UUUUUp完成签到,获得积分10
7秒前
CipherSage应助jason采纳,获得10
14秒前
小正完成签到,获得积分10
19秒前
归尘应助豆豆采纳,获得10
22秒前
土豆完成签到,获得积分10
29秒前
32秒前
32秒前
33秒前
Owen应助小元采纳,获得10
34秒前
35秒前
sure发布了新的文献求助10
36秒前
孙季沅完成签到,获得积分20
38秒前
39秒前
爆米花应助温暖书文采纳,获得30
39秒前
zola发布了新的文献求助10
39秒前
晓宇发布了新的文献求助10
40秒前
nemo发布了新的文献求助10
42秒前
六尺巷完成签到,获得积分10
49秒前
52秒前
李念完成签到,获得积分10
55秒前
田様应助Alex采纳,获得10
1分钟前
孙季沅发布了新的文献求助10
1分钟前
Zachary完成签到,获得积分10
1分钟前
1分钟前
小二郎应助虚拟的惜筠采纳,获得10
1分钟前
1分钟前
jason发布了新的文献求助10
1分钟前
1分钟前
小元发布了新的文献求助10
1分钟前
晓宇发布了新的文献求助10
1分钟前
研友_nEj9DZ完成签到,获得积分10
1分钟前
1分钟前
woshibyu发布了新的文献求助20
1分钟前
体贴的小天鹅完成签到,获得积分10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得40
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385