Multi-instance learning based artificial intelligence model to assist vocal fold leukoplakia diagnosis: A multicentre diagnostic study

医学 折叠(高阶函数) 皮肤病科 人工智能 计算机科学 机械工程 工程类
作者
Meiling Wang,Cheng‐Wei Tie,Jianhui Wang,Ji‐Qing Zhu,Bing‐Hong Chen,Ying Li,Sen Zhang,Lin Liu,Li Guo,Yang Long,Liqun Yang,Wei Jiao,Feng Jiang,Zhiqiang Zhao,Guiqi Wang,Wei Zhang,Quan‐Mao Zhang,Xiao‐Guang Ni
出处
期刊:American Journal of Otolaryngology [Elsevier BV]
卷期号:45 (4): 104342-104342
标识
DOI:10.1016/j.amjoto.2024.104342
摘要

To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740–0.811) and 0.720 (95 % CI 0.684–0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798–0.940) and 0.851 (95 % CI 0.756–0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743–0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682–0.755) to 0.808 (95 % CI 0.775–0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608–0.686) to 0.807 (95 % CI 0.773–0.837) for junior otolaryngologists. The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清欢发布了新的文献求助10
刚刚
1秒前
2秒前
如意蚂蚁完成签到,获得积分10
3秒前
4秒前
Chloe发布了新的文献求助10
4秒前
欣然如风完成签到,获得积分10
4秒前
5秒前
影像组学完成签到,获得积分10
6秒前
linglingling完成签到 ,获得积分10
6秒前
Muya发布了新的文献求助10
7秒前
MAGICALEYE发布了新的文献求助10
9秒前
雨田完成签到,获得积分10
10秒前
10秒前
hkp完成签到,获得积分10
10秒前
12秒前
Limerence完成签到,获得积分10
14秒前
雪山飞龙发布了新的文献求助10
15秒前
无所谓发布了新的文献求助10
15秒前
麦兜发布了新的文献求助10
16秒前
16秒前
劉牛发布了新的文献求助10
18秒前
19秒前
19秒前
Sampan完成签到,获得积分10
19秒前
MAGICALEYE完成签到,获得积分20
20秒前
真是麻烦发布了新的文献求助10
21秒前
蓬蓬完成签到 ,获得积分20
21秒前
Muya完成签到,获得积分20
22秒前
思源应助Calactic采纳,获得10
23秒前
23秒前
顾矜应助xiaoou采纳,获得10
23秒前
jjy完成签到,获得积分10
24秒前
zzz完成签到,获得积分10
26秒前
田玲念发布了新的文献求助10
26秒前
woodenfish发布了新的文献求助10
26秒前
27秒前
隐形曼青应助七七采纳,获得10
27秒前
南小木完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4769126
求助须知:如何正确求助?哪些是违规求助? 4105327
关于积分的说明 12699505
捐赠科研通 3823627
什么是DOI,文献DOI怎么找? 2110161
邀请新用户注册赠送积分活动 1134551
关于科研通互助平台的介绍 1015994