清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Critical Role of Cu Nanoparticle-Loaded Cu(100) Surface Structures on Structured Copper-Based Catalysts in Boosting Ethanol Generation in CO2 Electroreduction

材料科学 催化作用 纳米颗粒 化学工程 Boosting(机器学习) 乙醇 表面改性 电催化剂 纳米技术 无机化学 冶金 电化学 电极 物理化学 有机化学 化学 机器学习 计算机科学 工程类
作者
Zhijian Chen,Zhenghui Ma,Guoli Fan,Feng Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (27): 35143-35154 被引量:8
标识
DOI:10.1021/acsami.4c05973
摘要

Presently, realizing high ethanol selectivity in CO2 electroreduction remains challenging due to difficult C–C coupling and fierce product competition. In this work, we report an innovative approach for improving the efficiency of Cu-based electrocatalysts in ethanol generation from electrocatalytic CO2 reduction using a crystal plane modification strategy. These novel Cu-based electrocatalysts were fabricated by electrochemically activating three-dimensional (3D) flower-like CuO micro/nanostructures grown in situ on copper foils and modifying with surfactants. It was demonstrated that the fabricated Cu-based electrocatalyst featured a predominantly exposed Cu(100) surface loaded with high-density Cu nanoparticles (NPs). The optimal Cu-based electrocatalyst displayed considerably improved CO2 electroreduction performance, with a Faraday efficiency of 37.9% for ethanol and a maximum Faraday efficiency of 68.0% for C2+ products at −1.4 V vs RHE in an H-cell, accompanied by a high current density of 69.9 mA·cm–2, much better than the particulate Cu-based electrocatalyst. It was unveiled that the Cu(100)-rich surface of nanoscale petals with abundant under-coordinated copper atoms from CuNPs was conducive to the formation and stabilization of key *CH3CHO and *OC2H5 intermediates, thereby promoting ethanol generation. This study highlighted the critical role of CuNP-loaded Cu(100) surface structures on structured Cu-based electrocatalysts in enhancing ethanol production for the CO2 electroreduction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
今后应助科研通管家采纳,获得10
23秒前
27秒前
27秒前
无心的尔阳完成签到 ,获得积分20
31秒前
34秒前
45秒前
poki完成签到 ,获得积分10
50秒前
英俊的铭应助典雅的荣轩采纳,获得10
57秒前
知行者完成签到 ,获得积分10
59秒前
小鱼女侠完成签到 ,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
水天一色发布了新的文献求助10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
啾一口香菜完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
胡可完成签到 ,获得积分10
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
无悔完成签到 ,获得积分10
2分钟前
2分钟前
负责以山完成签到 ,获得积分10
2分钟前
zzzzz发布了新的文献求助10
2分钟前
烟雨江南完成签到,获得积分10
2分钟前
wyh295352318完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zzzzz完成签到,获得积分10
3分钟前
3分钟前
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
hyxu678完成签到,获得积分10
4分钟前
雷小牛完成签到 ,获得积分10
4分钟前
小蝴蝶完成签到,获得积分20
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小蝴蝶发布了新的文献求助10
4分钟前
Binggo完成签到,获得积分10
4分钟前
5分钟前
5分钟前
搞怪莫茗发布了新的文献求助10
5分钟前
Lillianzhu1完成签到,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983