Diffeomorphic transformer‐based abdomen MRI‐CT deformable image registration

图像配准 人工智能 计算机视觉 计算机科学 放射治疗计划 模式识别(心理学) 放射科 放射治疗 图像(数学) 医学
作者
Yang Lei,Luke A. Matkovic,Justin Roper,Tonghe Wang,Jun Zhou,Beth Ghavidel,Mark W. McDonald,Pretesh Patel,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (9): 6176-6184
标识
DOI:10.1002/mp.17235
摘要

Abstract Background Stereotactic body radiotherapy (SBRT) is a well‐established treatment modality for liver metastases in patients unsuitable for surgery. Both CT and MRI are useful during treatment planning for accurate target delineation and to reduce potential organs‐at‐risk (OAR) toxicity from radiation. MRI‐CT deformable image registration (DIR) is required to propagate the contours defined on high‐contrast MRI to CT images. An accurate DIR method could lead to more precisely defined treatment volumes and superior OAR sparing on the treatment plan. Therefore, it is beneficial to develop an accurate MRI‐CT DIR for liver SBRT. Purpose To create a new deep learning model that can estimate the deformation vector field (DVF) for directly registering abdominal MRI‐CT images. Methods The proposed method assumed a diffeomorphic deformation. By using topology‐preserved deformation features extracted from the probabilistic diffeomorphic registration model, abdominal motion can be accurately obtained and utilized for DVF estimation. The model integrated Swin transformers, which have demonstrated superior performance in motion tracking, into the convolutional neural network (CNN) for deformation feature extraction. The model was optimized using a cross‐modality image similarity loss and a surface matching loss. To compute the image loss, a modality‐independent neighborhood descriptor (MIND) was used between the deformed MRI and CT images. The surface matching loss was determined by measuring the distance between the warped coordinates of the surfaces of contoured structures on the MRI and CT images. To evaluate the performance of the model, a retrospective study was carried out on a group of 50 liver cases that underwent rigid registration of MRI and CT scans. The deformed MRI image was assessed against the CT image using the target registration error (TRE), Dice similarity coefficient (DSC), and mean surface distance (MSD) between the deformed contours of the MRI image and manual contours of the CT image. Results When compared to only rigid registration, DIR with the proposed method resulted in an increase of the mean DSC values of the liver and portal vein from 0.850 ± 0.102 and 0.628 ± 0.129 to 0.903 ± 0.044 and 0.763 ± 0.073, a decrease of the mean MSD of the liver from 7.216 ± 4.513 mm to 3.232 ± 1.483 mm, and a decrease of the TRE from 26.238 ± 2.769 mm to 8.492 ± 1.058 mm. Conclusion The proposed DIR method based on a diffeomorphic transformer provides an effective and efficient way to generate an accurate DVF from an MRI‐CT image pair of the abdomen. It could be utilized in the current treatment planning workflow for liver SBRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
carpybala完成签到,获得积分10
4秒前
5秒前
酷波er应助卫东要读博采纳,获得10
6秒前
7秒前
7秒前
天天快乐应助FFF采纳,获得10
7秒前
小杨发布了新的文献求助10
7秒前
勤奋的姒发布了新的文献求助10
8秒前
8秒前
9秒前
xingxing发布了新的文献求助10
10秒前
阿树发布了新的文献求助10
12秒前
ah发布了新的文献求助10
13秒前
jiang完成签到,获得积分10
13秒前
czx发布了新的文献求助10
14秒前
14秒前
juile完成签到,获得积分10
14秒前
三岁居居发布了新的文献求助10
14秒前
小二郎应助长欢采纳,获得10
14秒前
无花果应助失眠的耳机采纳,获得10
15秒前
dzy1317发布了新的文献求助10
15秒前
外向访卉发布了新的文献求助10
15秒前
17秒前
Frost发布了新的文献求助10
18秒前
刻苦的安白完成签到,获得积分10
18秒前
研友_Z63G18发布了新的文献求助10
18秒前
星辰大海应助阿树采纳,获得10
18秒前
汉堡包应助小杨采纳,获得30
19秒前
且行丶且努力完成签到,获得积分10
20秒前
20秒前
酷波er应助鲤鱼寒荷采纳,获得10
22秒前
ah完成签到,获得积分10
22秒前
22秒前
young_joint完成签到,获得积分10
23秒前
小满发布了新的文献求助10
24秒前
juile发布了新的文献求助30
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784481
求助须知:如何正确求助?哪些是违规求助? 3329665
关于积分的说明 10242830
捐赠科研通 3045021
什么是DOI,文献DOI怎么找? 1671569
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391