材料科学
纳米技术
杰纳斯
可穿戴计算机
生物相容性
计算机科学
人体皮肤
生物医学工程
人工智能
嵌入式系统
工程类
生物
冶金
遗传学
作者
Haiyu Li,Hui Zhang,Xinxin Liu,Jing Jie,Ming Yin,Jie Du
标识
DOI:10.1002/advs.202509573
摘要
Abstract Inspired by Chinese Nian Gao, a traditional food in China, a skin‐like bio‐hydrogel with asymmetric Janus adhesion and textured structures on its surface is fabricated via a one‐pot strategy and is evaluated as electronic skin for sensing and human–machine interaction. The e‐skin is constructed through hydrogen bonding and metal‐ligand coordination with favorable toughness and stretchability (tensile strength of 173 kPa, strain of 1593%). The bottom surface of the e‐skin reached an adhesion strength of 66.7 kPa, and the upper surface shows no adhesion on different substrates, which ensures the stable signal collection on the bottom and avoids interference from incidental contact with clothing or external objects on the upper side. The skin‐mimic textures are created in drying, which endows the hydrogel with visual authenticity comparable to biological skin; consequently, it can be used for human scar coverage and skin encapsulation of humanoid robots. The e‐skin has an outstanding biocompatibility as well as a high self‐healing efficiency of 93.5% and it is developed and demonstrated for multipurpose real‐time applications. Furthermore, it accurately identifies hand gestures to control an assistive robotic arm in real‐time based on EMG and EEG signals, highlighting its potential in next‐generation aesthetic and functional wearable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI