Coil shape defects prediction algorithm for hot strip rolling based on Siamese semi-supervised DAE-CNN model

电磁线圈 人工神经网络 过程(计算) 卷积神经网络 人工智能 算法 工程类 计算机科学 模式识别(心理学) 操作系统 电气工程
作者
Fengwei Jing,Mengyang Zhang,Jie Li,Guozheng Xu,Jing Wang
出处
期刊:Assembly Automation [Emerald (MCB UP)]
卷期号:42 (6): 773-781 被引量:3
标识
DOI:10.1108/aa-07-2022-0179
摘要

Purpose Coil shape quality is the external representation of strip product quality, and it is also a direct reflection of strip production process level. This paper aims to predict the coil shape results in advance based on the real-time data through the designed algorithm. Design/methodology/approach Aiming at the strip production scale and coil shape application requirements, this paper proposes a strip coil shape defects prediction algorithm based on Siamese semi-supervised denoising auto-encoder (DAE)-convolutional neural networks. The prediction algorithm first reconstructs the information eigenvectors using DAE, then combines the convolutional neural networks and skip connection to further process the eigenvectors and finally compares the eigenvectors with the full connect neural network and predicts the strip coil shape condition. Findings The performance of the model is further verified by using the coil shape data of a steel mill, and the results show that the overall prediction accuracy, recall rate and F -measure of the model are significantly better than other commonly used classification models, with each index exceeding 88%. In addition, the prediction results of the model for different steel grades strip coil shape are also very stable, and the model has strong generalization ability. Originality/value This research provides technical support for the adjustment and optimization of strip coil shape process based on the data-driven level, which helps to improve the production quality and intelligence level of hot strip continuous rolling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助段辉采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
科目三应助bc采纳,获得10
5秒前
hahahaha发布了新的文献求助10
5秒前
YAYING完成签到 ,获得积分10
5秒前
啥也不会完成签到,获得积分10
5秒前
ustinian发布了新的文献求助10
9秒前
严珍珍完成签到 ,获得积分10
9秒前
张一森完成签到,获得积分20
10秒前
10秒前
脑洞疼应助nano采纳,获得10
10秒前
10秒前
11秒前
大意的鹤完成签到,获得积分10
11秒前
十把刀刀完成签到,获得积分10
11秒前
12秒前
12秒前
核桃完成签到,获得积分10
12秒前
嘟嘟左完成签到,获得积分10
13秒前
时尚香寒完成签到,获得积分20
14秒前
自由凌丝发布了新的文献求助10
14秒前
14秒前
15秒前
丘比特应助不来采纳,获得10
15秒前
跳跃的迎荷完成签到 ,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
嘿嘿发布了新的文献求助10
16秒前
余弦完成签到 ,获得积分10
17秒前
shuke完成签到,获得积分10
17秒前
Hello应助伯克利芙蓉王采纳,获得10
17秒前
陈惠卿88完成签到,获得积分10
17秒前
科研通AI6应助核桃采纳,获得10
19秒前
范达克霍姆完成签到,获得积分10
19秒前
踏实的金针菇完成签到 ,获得积分10
23秒前
李爱国应助我要搞科研采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547160
求助须知:如何正确求助?哪些是违规求助? 4632815
关于积分的说明 14628541
捐赠科研通 4574376
什么是DOI,文献DOI怎么找? 2508221
邀请新用户注册赠送积分活动 1484799
关于科研通互助平台的介绍 1455894