已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study

医学 袖状胃切除术 减肥 回顾性队列研究 队列 体质指数 队列研究 外科 物理疗法 肥胖 胃分流术 内科学
作者
Patrick Saux,Pierre Bauvin,Violeta Raverdy,Julien Teigny,Hélène Verkindt,Tomy Soumphonphakdy,Maxence Debert,Anne Jacobs,Daan Jacobs,Valerie M. Monpellier,Phong Ching Lee,Chin Hong Lim,Johanna C. Andersson‐Assarsson,Lena Carlsson,Per‐Arne Svensson,Florence Galtier,Guélareh Dezfoulian,Mihaela Moldovanu,S. Andrieux,Julien Couster
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (10): e692-e702 被引量:42
标识
DOI:10.1016/s2589-7500(23)00135-8
摘要

Background Weight loss trajectories after bariatric surgery vary widely between individuals, and predicting weight loss before the operation remains challenging. We aimed to develop a model using machine learning to provide individual preoperative prediction of 5-year weight loss trajectories after surgery. Methods In this multinational retrospective observational study we enrolled adult participants (aged $\ge$18 years) from ten prospective cohorts (including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese Subjects study, and a large cohort from the Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials (SleevePass [NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year followup after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band. Patients with a previous history of bariatric surgery or large delays between scheduled and actual visits were excluded. The training cohort comprised patients from two centres in France (ABOS and BAREVAL). The primary outcome was BMI at 5 years. A model was developed using least absolute shrinkage and selection operator to select variables and the classification and regression trees algorithm to build interpretable regression trees. The performances of the model were assessed through the median absolute deviation (MAD) and root mean squared error (RMSE) of BMI. Findings10 231 patients from 12 centres in ten countries were included in the analysis, corresponding to 30 602 patient-years. Among participants in all 12 cohorts, 7701 (75$\bullet$3%) were female, 2530 (24$\bullet$7%) were male. Among 434 baseline attributes available in the training cohort, seven variables were selected: height, weight, intervention type, age, diabetes status, diabetes duration, and smoking status. At 5 years, across external testing cohorts the overall mean MAD BMI was 2$\bullet$8 kg/m${}^2$ (95% CI 2$\bullet$6-3$\bullet$0) and mean RMSE BMI was 4$\bullet$7 kg/m${}^2$ (4$\bullet$4-5$\bullet$0), and the mean difference between predicted and observed BMI was-0$\bullet$3 kg/m${}^2$ (SD 4$\bullet$7). This model is incorporated in an easy to use and interpretable web-based prediction tool to help inform clinical decision before surgery. InterpretationWe developed a machine learning-based model, which is internationally validated, for predicting individual 5-year weight loss trajectories after three common bariatric interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Bin_Liu发布了新的文献求助10
3秒前
Cheng完成签到 ,获得积分0
4秒前
高屋建瓴完成签到,获得积分10
4秒前
strelias完成签到,获得积分10
5秒前
山复尔尔完成签到 ,获得积分10
5秒前
蓝华完成签到 ,获得积分10
5秒前
牢孙发布了新的文献求助30
5秒前
单薄的夜阑完成签到,获得积分10
5秒前
江流有声完成签到 ,获得积分10
6秒前
几两完成签到 ,获得积分10
9秒前
cc完成签到 ,获得积分10
10秒前
成就的靖琪完成签到,获得积分10
11秒前
13秒前
是多多呀完成签到 ,获得积分10
14秒前
万能图书馆应助橘子脉动采纳,获得10
14秒前
健忘草莓发布了新的文献求助10
16秒前
znlion完成签到,获得积分10
17秒前
陈砍砍完成签到 ,获得积分10
18秒前
张先生2365完成签到,获得积分10
18秒前
dinglingling发布了新的文献求助30
18秒前
yyy完成签到 ,获得积分10
19秒前
19秒前
龙叶静完成签到 ,获得积分10
20秒前
蝴蝶完成签到 ,获得积分10
20秒前
孤标傲世完成签到 ,获得积分10
20秒前
wenlong完成签到 ,获得积分10
22秒前
科研狗完成签到 ,获得积分0
22秒前
Chris完成签到 ,获得积分0
25秒前
czj完成签到 ,获得积分10
26秒前
敞敞亮亮完成签到 ,获得积分10
26秒前
在水一方完成签到 ,获得积分10
27秒前
星野Nana_发布了新的文献求助10
29秒前
Haki完成签到,获得积分10
31秒前
小HO完成签到 ,获得积分10
32秒前
斯文败类应助小C同学采纳,获得10
32秒前
33秒前
烟雨梦兮发布了新的文献求助10
34秒前
老实的抽屉完成签到 ,获得积分10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123881
求助须知:如何正确求助?哪些是违规求助? 3661751
关于积分的说明 11589829
捐赠科研通 3362373
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827809