Research on in-situ detection technology for marine biofouling based on photoacoustic signal excitation and detection

生物污染 结垢 环境科学 原位 海水 材料科学 遥感 海洋学 地质学 化学 生物化学 有机化学
作者
Qinglin Kong,Xingkui Yan,Shanshan Zheng,Dongqing Peng,Haofang Yu,Liang Zheng,Minzhe Liu,Wei Wang,Ruizhan Zhai,Peixin Chen
标识
DOI:10.1117/12.2689074
摘要

Marine instruments deployed in seawater inevitably experience biofouling, which severely reduces their service life and hinders ocean monitoring. Marine biofouling greatly affects the service life of marine optical instruments and thus has a detrimental impact on ocean monitoring. The fouling community exhibits an attachment succession phenomenon. Macroscopic fouling organisms have adherent and stubborn attachments, whereas microorganisms during early fouling stages are easy to remove, but excessive cleaning also greatly increases energy consumption. Therefore, monitoring biofouling and selecting appropriate removal timing is critical. Due to the complex and dynamic nature of the marine environment, in-situ detection of microbial fouling on optical window of marine optical instrument is challenging because of many factors such as target characteristics, seawater turbidity, light refraction and scattering. Currently, there are no mature technologies available for in-situ fouling detection so as to remove timely micro fouling. To solve this problem, this study deployed thin poly methyl methacrylate (PMMA) coupons within the coastal seawaters of Qingdao, followed by in-situ mapping of photoacoustic signals using a self-built excitation and detection platform, along with along with of transmittance spectrum analysis on fouled PMMA thin films using PerkinElmer LAMBDA750. By combining results from both techniques with microscopic morphology analysis, we explored the relationship between microbial fouling and photoacoustic signal. The research results will provide a novel approach and technical basis for in-situ detection and timely clearance of microbial fouling on optical windows of marine optical instruments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
烟花应助科研通管家采纳,获得10
3秒前
科研通AI2S应助完美星落采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得30
3秒前
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
完美世界应助sum采纳,获得10
4秒前
星辰大海应助binges on choco采纳,获得10
5秒前
神华发布了新的文献求助10
6秒前
7秒前
囧囧囧发布了新的文献求助10
8秒前
9秒前
starfish发布了新的文献求助10
10秒前
11秒前
lxyonline发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
西村李二狗完成签到,获得积分10
15秒前
力量大健康的科技报完成签到,获得积分10
15秒前
琳儿真的很瘦了完成签到,获得积分10
17秒前
萨尔莫斯发布了新的文献求助10
17秒前
17秒前
ptjam完成签到 ,获得积分10
21秒前
njxray完成签到 ,获得积分10
23秒前
Ava应助萨尔莫斯采纳,获得10
24秒前
o3uii完成签到 ,获得积分10
24秒前
25秒前
踏实的傲白完成签到 ,获得积分10
25秒前
Jeson完成签到,获得积分10
26秒前
今后应助大侦探皮卡丘采纳,获得10
26秒前
研友_Z7mV4L发布了新的文献求助10
26秒前
CipherSage应助的的采纳,获得10
27秒前
孔懿轩发布了新的文献求助10
32秒前
高分求助中
Calogero—Moser—Sutherland Systems 666
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346205
关于积分的说明 10328539
捐赠科研通 3062682
什么是DOI,文献DOI怎么找? 1681143
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646