EvoScenario: Integrating Road Structures into Critical Scenario Generation for Autonomous Driving System Testing

计算机科学 软件部署 序列(生物学) 场景测试 顺序图 单元测试 Java 实时计算 人工智能 软件工程 软件 统一建模语言 程序设计语言 遗传学 多样性(控制论) 生物
作者
Shuncheng Tang,Zhenya Zhang,Jixiang Zhou,Yuan Zhou,Yan‐Fu Li,Yinxing Xue
标识
DOI:10.1109/issre59848.2023.00054
摘要

Autonomous Driving Systems (ADS) are safety-critical and require comprehensive testing before their deployment on public roads. Most existing testing approaches consist in generating scenarios that vary the behaviors of dynamic objects, while leaving a predefined road environment unchanged. Consequently, these approaches overlook the influence of different road structures on ADS safety, e.g., collisions can happen more frequently than usual on a merging road, because of the specific road structure. In this paper, we propose EvoScenario, a novel approach that integrates road structures into the generation of critical scenarios for exposing safety risks of ADS. Specifically, EvoScenario models a driving road as a sequence of road segments characterized in different aspects, such as their shapes and widths. Then, a test case is defined by concatenating the sequence of road segments and the sequence of dynamic object maneuvers. Inspired by EvoSuite that generates sequential method calls for Java unit testing, EvoScenario leverages the sequential models of test cases and constructs a multi-objective optimization framework to search for critical scenarios. We implement and demonstrate EvoScenario on an ADS provided by our industrial partner. Evaluation results show that EvoScenario can identify 6 types of safety violations, and outperform existing baseline testing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cc发布了新的文献求助10
2秒前
天真千易发布了新的文献求助10
3秒前
慕青应助不成文采纳,获得10
3秒前
王先生完成签到 ,获得积分10
4秒前
蓝色发布了新的文献求助10
5秒前
9秒前
10秒前
鱼贝贝完成签到,获得积分10
11秒前
Orange应助蓝岳洋采纳,获得10
12秒前
余味应助外向宛菡采纳,获得10
12秒前
14秒前
Ann完成签到,获得积分10
16秒前
111完成签到,获得积分10
16秒前
zhuazhua完成签到 ,获得积分10
16秒前
Isaac完成签到 ,获得积分10
16秒前
蓝色发布了新的文献求助30
18秒前
19秒前
博修发布了新的文献求助30
19秒前
22秒前
小太阳完成签到,获得积分10
23秒前
25秒前
科研通AI5应助jj采纳,获得10
25秒前
QAQ完成签到,获得积分10
25秒前
Hz发布了新的文献求助10
25秒前
nilu发布了新的文献求助10
25秒前
25秒前
JYX完成签到 ,获得积分10
26秒前
小丑鱼儿完成签到 ,获得积分10
27秒前
28秒前
小张张子完成签到,获得积分10
29秒前
30秒前
花凉完成签到,获得积分10
31秒前
31秒前
llllll123456发布了新的文献求助10
31秒前
31秒前
花凉发布了新的文献求助10
32秒前
Fischl完成签到 ,获得积分10
33秒前
JamesPei应助love采纳,获得50
33秒前
小张张子发布了新的文献求助10
34秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445