已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based ischemia-specific stenosis prediction: A Chinese multicenter coronary CT angiography study

医学 部分流量储备 狭窄 冠状动脉疾病 放射科 缺血 病变 置信区间 血管造影 曲线下面积 计算机断层血管造影 回顾性队列研究 内科学 心脏病学 冠状动脉造影 外科 心肌梗塞
作者
Xiao Lei Zhang,Bo Zhang,Chun Xiang Tang,Yi Ning Wang,Jia Yin Zhang,Meng Yu,Yang Hou,Min Zheng,Dai‐Min Zhang,Xiu Hua Hu,Lei Xu,Hui Liu,Zhi Sun,Long Jiang Zhang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:168: 111133-111133 被引量:3
标识
DOI:10.1016/j.ejrad.2023.111133
摘要

To evaluate the performance of coronary computed tomography angiography (CCTA) derived characteristics including CT derived fractional flow reserve (CT-FFR) with FFR as a reference standard in identifying the lesion-specific ischemia by machine learning (ML) algorithms.The retrospective analysis enrolled 596 vessels in 462 patients (mean age, 61 years ± 11 [SD]; 71.4 % men) with suspected coronary artery disease who underwent CCTA and invasive FFR. The data were divided into training cohort, internal validation cohort, external validation cohorts 1 and 2 according to participating centers. All CCTA-derived parameters, which contained 10 qualitative and 33 quantitative plaque parameters, were collected to establish ML model. The Boruta and unsupervised clustering algorithm were implemented to select important and non-redundant parameters. Finally, the eight features with the highest mean importance were included for further ML model establishment and decision tree building. Five models were built to predict lesion-specific ischemia: stenosis degree from CCTA, CT-FFR, ΔCT-FFR, ML model and nested model.Low-attenuation plaque, bend and lesion length were the main predictors of ischemia-specific lesions. Of 5 models, the ML model showed favorable discrimination for ischemia-specific lesions in the training and three validation sets (area under the curve [95 % confidence interval], 0.93 [0.90-0.96], 0.86 [0.79-0.94], 0.88 [0.83-0.94], and 0.90 [0.84-0.96], respectively). The nested model which combined the ML model and CT-FFR showed better diagnostic efficacy (AUC [95 %CI], 0.96 [0.94-0.99], 0.92 [0.86-0.99], 0.92 [0.86-0.99] and 0.94 [0.91-0.98], respectively; all P < 0.05), and net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were significantly higher than CT-FFR alone.Comprehensive CCTA-derived multiparameter model could better predict the ischemia-specific lesions by ML algorithms compared to stenosis degree from CTA, CT-FFR and ΔCT-FFR. Decision tree can be used to predict myocardial ischemia effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
合适的银耳汤完成签到 ,获得积分10
刚刚
捞出来完成签到 ,获得积分10
刚刚
细腻笑卉发布了新的文献求助10
刚刚
酷炫冬日发布了新的文献求助10
2秒前
2秒前
Diamond完成签到 ,获得积分10
3秒前
Colo发布了新的文献求助10
6秒前
Donger完成签到 ,获得积分10
7秒前
10秒前
成就书雪完成签到,获得积分0
11秒前
爆米花应助Gfi采纳,获得10
12秒前
长不大的幼稚完成签到 ,获得积分10
13秒前
隐形曼青应助白什么冰采纳,获得10
13秒前
leungzzz发布了新的文献求助30
14秒前
14秒前
15秒前
bird完成签到,获得积分10
16秒前
Liz发布了新的文献求助10
17秒前
kenti2023完成签到 ,获得积分10
18秒前
123完成签到 ,获得积分10
18秒前
Donger发布了新的文献求助10
19秒前
ding应助ren采纳,获得10
19秒前
帧远大帝完成签到 ,获得积分10
20秒前
jerry完成签到 ,获得积分10
20秒前
21秒前
范ER完成签到 ,获得积分10
22秒前
guo发布了新的文献求助10
24秒前
24秒前
李健应助十一采纳,获得10
25秒前
白什么冰完成签到,获得积分10
27秒前
xd_c完成签到,获得积分20
27秒前
hins完成签到 ,获得积分10
28秒前
CipherSage应助小小科研牛马采纳,获得10
30秒前
pililili发布了新的文献求助10
30秒前
31秒前
leoskrrr完成签到,获得积分10
32秒前
35秒前
vivi完成签到,获得积分10
36秒前
HUO完成签到 ,获得积分10
37秒前
38秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502374
求助须知:如何正确求助?哪些是违规求助? 4598316
关于积分的说明 14463567
捐赠科研通 4531838
什么是DOI,文献DOI怎么找? 2483679
邀请新用户注册赠送积分活动 1466923
关于科研通互助平台的介绍 1439539