医学
部分流量储备
狭窄
冠状动脉疾病
放射科
缺血
病变
置信区间
血管造影
曲线下面积
计算机断层血管造影
回顾性队列研究
内科学
心脏病学
冠状动脉造影
外科
心肌梗塞
作者
Xiao Lei Zhang,Bo Zhang,Chun Xiang Tang,Yi Ning Wang,Jia Yin Zhang,Meng Yu,Yang Hou,Min Zheng,Dai‐Min Zhang,Xiu Hua Hu,Lei Xu,Hui Liu,Zhi Sun,Long Jiang Zhang
标识
DOI:10.1016/j.ejrad.2023.111133
摘要
To evaluate the performance of coronary computed tomography angiography (CCTA) derived characteristics including CT derived fractional flow reserve (CT-FFR) with FFR as a reference standard in identifying the lesion-specific ischemia by machine learning (ML) algorithms.The retrospective analysis enrolled 596 vessels in 462 patients (mean age, 61 years ± 11 [SD]; 71.4 % men) with suspected coronary artery disease who underwent CCTA and invasive FFR. The data were divided into training cohort, internal validation cohort, external validation cohorts 1 and 2 according to participating centers. All CCTA-derived parameters, which contained 10 qualitative and 33 quantitative plaque parameters, were collected to establish ML model. The Boruta and unsupervised clustering algorithm were implemented to select important and non-redundant parameters. Finally, the eight features with the highest mean importance were included for further ML model establishment and decision tree building. Five models were built to predict lesion-specific ischemia: stenosis degree from CCTA, CT-FFR, ΔCT-FFR, ML model and nested model.Low-attenuation plaque, bend and lesion length were the main predictors of ischemia-specific lesions. Of 5 models, the ML model showed favorable discrimination for ischemia-specific lesions in the training and three validation sets (area under the curve [95 % confidence interval], 0.93 [0.90-0.96], 0.86 [0.79-0.94], 0.88 [0.83-0.94], and 0.90 [0.84-0.96], respectively). The nested model which combined the ML model and CT-FFR showed better diagnostic efficacy (AUC [95 %CI], 0.96 [0.94-0.99], 0.92 [0.86-0.99], 0.92 [0.86-0.99] and 0.94 [0.91-0.98], respectively; all P < 0.05), and net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were significantly higher than CT-FFR alone.Comprehensive CCTA-derived multiparameter model could better predict the ischemia-specific lesions by ML algorithms compared to stenosis degree from CTA, CT-FFR and ΔCT-FFR. Decision tree can be used to predict myocardial ischemia effectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI