Self-supervised multi-modal training from uncurated images and reports enables monitoring AI in radiology

计算机科学 人工智能 机器学习 统一医学语言系统 领域(数学分析) 领域知识 语言模型 医学影像学 深度学习 自然语言处理 计算机视觉 数学 数学分析
作者
Sang Joon Park,Eun Sun Lee,Kyung Sook Shin,Jeong Eun Lee,Jong Chul Ye
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103021-103021 被引量:4
标识
DOI:10.1016/j.media.2023.103021
摘要

The escalating demand for artificial intelligence (AI) systems that can monitor and supervise human errors and abnormalities in healthcare presents unique challenges. Recent advances in vision-language models reveal the challenges of monitoring AI by understanding both visual and textual concepts and their semantic correspondences. However, there has been limited success in the application of vision-language models in the medical domain. Current vision-language models and learning strategies for photographic images and captions call for a web-scale data corpus of image and text pairs which is not often feasible in the medical domain. To address this, we present a model named medical cross-attention vision-language model (Medical X-VL), which leverages key components to be tailored for the medical domain. The model is based on the following components: self-supervised unimodal models in medical domain and a fusion encoder to bridge them, momentum distillation, sentencewise contrastive learning for medical reports, and sentence similarity-adjusted hard negative mining. We experimentally demonstrated that our model enables various zero-shot tasks for monitoring AI, ranging from the zero-shot classification to zero-shot error correction. Our model outperformed current state-of-the-art models in two medical image datasets, suggesting a novel clinical application of our monitoring AI model to alleviate human errors. Our method demonstrates a more specialized capacity for fine-grained understanding, which presents a distinct advantage particularly applicable to the medical domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干雁桃完成签到,获得积分20
1秒前
高贵绿真完成签到 ,获得积分10
3秒前
学术菜鸟完成签到,获得积分10
5秒前
5秒前
11秒前
13秒前
WangSir完成签到,获得积分10
14秒前
14秒前
hs完成签到,获得积分10
15秒前
16秒前
zzz完成签到 ,获得积分10
17秒前
17秒前
哈哈哈完成签到,获得积分10
18秒前
Echo发布了新的文献求助10
18秒前
心灵美草丛完成签到,获得积分10
18秒前
empty完成签到,获得积分20
19秒前
荣枫发布了新的文献求助10
20秒前
高贵安青完成签到 ,获得积分10
21秒前
能干雁桃发布了新的文献求助10
22秒前
fhuili完成签到,获得积分10
23秒前
26秒前
Cc完成签到,获得积分10
27秒前
苻人英完成签到,获得积分10
27秒前
寻舟者完成签到,获得积分10
30秒前
Echo完成签到,获得积分10
31秒前
NSS完成签到 ,获得积分10
32秒前
今后应助小杨采纳,获得10
32秒前
tx发布了新的文献求助10
34秒前
37秒前
38秒前
怕孤独的鹭洋完成签到,获得积分10
41秒前
咪咪完成签到,获得积分10
41秒前
Lucas应助tx采纳,获得10
41秒前
饱满的箴完成签到 ,获得积分10
43秒前
英姑应助Jokko采纳,获得10
46秒前
涵泽发布了新的文献求助10
46秒前
Singularity应助拼搏向上采纳,获得10
49秒前
49秒前
谨慎采白完成签到 ,获得积分10
49秒前
执着的忆雪完成签到,获得积分10
50秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799173
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321997
捐赠科研通 3061303
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445