Enhancing Drug Repositioning through Local Interactive Learning with Bilinear Attention Networks

计算机科学 药物重新定位 成对比较 机器学习 人工智能 聚类分析 药品 数据挖掘 医学 药理学
作者
Xianfang Tang,Chang Zhou,Changcheng Lu,Yajie Meng,Junlin Xu,Xinrong Hu,Geng Tian,Jialiang Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1644-1655 被引量:14
标识
DOI:10.1109/jbhi.2023.3335275
摘要

Drug repositioning has emerged as a promising strategy for identifying new therapeutic applications for existing drugs. In this study, we present DRGBCN, a novel computational method that integrates heterogeneous information through a deep bilinear attention network to infer potential drugs for specific diseases. DRGBCN involves constructing a comprehensive drug-disease network by incorporating multiple similarity networks for drugs and diseases. Firstly, we introduce a layer attention mechanism to effectively learn the embeddings of graph convolutional layers from these networks. Subsequently, a bilinear attention network is constructed to capture pairwise local interactions between drugs and diseases. This combined approach enhances the accuracy and reliability of predictions. Finally, a multi-layer perceptron module is employed to evaluate potential drugs. Through extensive experiments on three publicly available datasets, DRGBCN demonstrates better performance over baseline methods in 10-fold cross-validation, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.9399. Furthermore, case studies on bladder cancer and acute lymphoblastic leukemia confirm the practical application of DRGBCN in real-world drug repositioning scenarios. Importantly, our experimental results from the drug-disease network analysis reveal the successful clustering of similar drugs within the same community, providing valuable insights into drug-disease interactions. In conclusion, DRGBCN holds significant promise for uncovering new therapeutic applications of existing drugs, thereby contributing to the advancement of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaohe完成签到,获得积分10
刚刚
刚刚
www完成签到,获得积分10
1秒前
乐怡日尧完成签到,获得积分10
1秒前
2秒前
kiwi发布了新的文献求助10
3秒前
1212431发布了新的文献求助10
6秒前
樱桃超级大丸子完成签到,获得积分10
10秒前
10秒前
英姑应助Guoqiang采纳,获得10
14秒前
14秒前
苹果千柔发布了新的文献求助10
17秒前
李健的小迷弟应助lin采纳,获得10
18秒前
19秒前
洁净之柔发布了新的文献求助10
19秒前
chenhui发布了新的文献求助10
19秒前
achaia完成签到,获得积分10
22秒前
传奇3应助狂飙的小蜗牛采纳,获得30
23秒前
23秒前
科研通AI2S应助ZHANG123采纳,获得10
23秒前
25秒前
笙声发布了新的文献求助30
28秒前
28秒前
苹果千柔完成签到,获得积分20
29秒前
lin发布了新的文献求助10
31秒前
jiahao完成签到,获得积分10
34秒前
xyx完成签到,获得积分10
36秒前
斯文败类应助学术白菜采纳,获得10
39秒前
洁净之柔完成签到,获得积分10
39秒前
41秒前
岳莹晓完成签到 ,获得积分10
42秒前
丁丁完成签到,获得积分20
44秒前
45秒前
Guoqiang发布了新的文献求助10
45秒前
酷波er应助乐观的镜子采纳,获得10
50秒前
caohuijun发布了新的文献求助10
50秒前
52秒前
犹豫的箴完成签到 ,获得积分10
54秒前
lin完成签到,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844