Prediction and related genes of cancer distant metastasis based on deep learning

转移 骨转移 癌症 前列腺癌 基因 癌症研究 乳腺癌 肺癌 癌细胞 肝癌 生物 医学 肿瘤科 内科学 遗传学
作者
Weiluo Cai,Mo Cheng,Yi Wang,Peihang Xu,Xi Yang,Zhengwang Sun,Wangjun Yan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107664-107664 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.107664
摘要

Cancer metastasis is one of the main causes of cancer progression and difficulty in treatment. Genes play a key role in the process of cancer metastasis, as they can influence tumor cell invasiveness, migration ability and fitness. At the same time, there is heterogeneity in the organs of cancer metastasis. Breast cancer, prostate cancer, etc. tend to metastasize in the bone. Previous studies have pointed out that the occurrence of metastasis is closely related to which tissue is transferred to and genes. In this paper, we identified genes associated with cancer metastasis to different tissues based on LASSO and Pearson correlation coefficients. In total, we identified 45 genes associated with bone metastases, 89 genes associated with lung metastases, and 86 genes associated with liver metastases. Through the expression of these genes, we propose a CNN-based model to predict the occurrence of metastasis. We call this method MDCNN, which introduces a modulation mechanism that allows the weights of convolution kernels to be adjusted at different positions and feature maps, thereby adaptively changing the convolution operation at different positions. Experiments have proved that MDCNN has achieved satisfactory prediction accuracy in bone metastasis, lung metastasis and liver metastasis, and is better than other 4 methods of the same kind. We performed enrichment analysis and immune infiltration analysis on bone metastasis-related genes, and found multiple pathways and GO terms related to bone metastasis, and found that the abundance of macrophages and monocytes was the highest in patients with bone metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
1秒前
jianglan发布了新的文献求助10
1秒前
熊大完成签到,获得积分10
2秒前
蜡笔小美完成签到,获得积分10
3秒前
新新发布了新的文献求助10
4秒前
Nomi完成签到,获得积分10
7秒前
李玉玲关注了科研通微信公众号
7秒前
老张发布了新的文献求助10
15秒前
SY完成签到,获得积分10
16秒前
17秒前
桃花依旧完成签到,获得积分10
19秒前
LMY完成签到,获得积分10
21秒前
dropofwater完成签到,获得积分10
23秒前
24秒前
29秒前
Ext完成签到,获得积分10
31秒前
研友_8Raw2Z发布了新的文献求助10
31秒前
32秒前
bkagyin应助Ari_Kun采纳,获得10
32秒前
32秒前
好饭无人拼完成签到,获得积分10
33秒前
刘存鮡溪完成签到,获得积分10
34秒前
情怀应助天真小蚂蚁采纳,获得10
34秒前
35秒前
冷傲的南珍完成签到,获得积分10
36秒前
xjcy应助庚辰梦秋采纳,获得10
36秒前
Ext发布了新的文献求助10
36秒前
无花果应助林加雄采纳,获得10
38秒前
老张发布了新的文献求助10
40秒前
大个应助123采纳,获得10
41秒前
阿颦完成签到,获得积分10
42秒前
42秒前
43秒前
Meyako应助可靠雅青采纳,获得10
43秒前
天真小蚂蚁完成签到,获得积分10
44秒前
45秒前
48秒前
花薇Liv完成签到,获得积分10
51秒前
mashu完成签到,获得积分10
53秒前
科研通AI5应助liuhll采纳,获得30
53秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1500
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4338548
求助须知:如何正确求助?哪些是违规求助? 3847766
关于积分的说明 12016941
捐赠科研通 3488922
什么是DOI,文献DOI怎么找? 1914818
邀请新用户注册赠送积分活动 957736
科研通“疑难数据库(出版商)”最低求助积分说明 858118