Which network effectively supports urban economic growth? Evidence from China

中国 城市经济学 区域科学 中国大陆 经济地理学 城市规划 经济增长 地理 经济 经济 工程类 土木工程 考古
作者
Song Wang,Xinru Wang,Canyu Yang,Liang Dai
出处
期刊:The International Journal of Urban Sciences [Taylor & Francis]
卷期号:28 (2): 284-317 被引量:1
标识
DOI:10.1080/12265934.2023.2253198
摘要

ABSTRACTCity's economic development is increasingly dependent on its positionality in urban networks built on various intercity element flows. In this study, based on data crawling and gravity modelling, seven urban networks of 286 prefecture-level and above cities in mainland China were constructed for 2011 and 2019, and various influencing factors were analyzed. A qualitative comparative analysis was then employed to explore the impacts of urban connectivity in different networks on the urban economy and shed light on the optimal combination of networks to support urban economic growth effectively. The results demonstrate that in 2011, intercity capital, information, trade, knowledge, and technology networks were all essential to urban economic development, while the labour and transportation networks were supporting the former five networks. In 2019, urban development relied more on innovative knowledge and technology networks rather than labour, information, transportation, and trade networks. The importance of the capital network decreased, whereas the knowledge and technology networks still played significant roles in urban economic growth, suggesting an overall transformation to an innovation-driven economy in China.KEYWORDS: Urban economic growthurban networkgravity modelqualitative comparative analysisoptimal combination Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis paper was supported by the Ministry of Education for Philosophy and Social Sciences Research in the Later Stage (grant number 21JHQ069); National Natural Science Foundation of China (grant number 42271212 and 42071154); Postdoctoral foundation of Northeastern University (grant number 20210201); Fundamental Research Funds for the Central Universities (grant number N2206011 and N2324003-06).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
暴龙战士图图完成签到,获得积分10
刚刚
Wangjingxuan完成签到,获得积分10
刚刚
尘弦完成签到 ,获得积分10
1秒前
蔺天宇完成签到,获得积分10
1秒前
Estrella完成签到,获得积分10
1秒前
耍酷曼雁发布了新的文献求助10
1秒前
风趣安青完成签到 ,获得积分10
2秒前
2秒前
cgj发布了新的文献求助10
2秒前
ash完成签到,获得积分10
3秒前
wangke完成签到,获得积分10
3秒前
荡乎宇宙如虚舟完成签到,获得积分10
4秒前
稳稳发布了新的文献求助10
4秒前
4秒前
冰魂应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助cwx采纳,获得10
6秒前
6秒前
6秒前
就知道完成签到,获得积分10
6秒前
一马奔腾完成签到,获得积分0
7秒前
清颜完成签到 ,获得积分10
7秒前
小幸运完成签到,获得积分10
8秒前
生动的小白菜完成签到,获得积分10
8秒前
sczsjrhyy完成签到,获得积分10
8秒前
大常完成签到 ,获得积分10
9秒前
10秒前
萤火完成签到,获得积分10
10秒前
fuguier完成签到,获得积分10
10秒前
怡然灵珊发布了新的文献求助10
10秒前
anny2022完成签到,获得积分10
10秒前
大咸鱼发布了新的文献求助10
10秒前
苗条的一一完成签到,获得积分10
11秒前
佐为完成签到 ,获得积分10
11秒前
Capital完成签到,获得积分10
12秒前
LVVVB完成签到,获得积分10
12秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830597
求助须知:如何正确求助?哪些是违规求助? 3372918
关于积分的说明 10475947
捐赠科研通 3092779
什么是DOI,文献DOI怎么找? 1702293
邀请新用户注册赠送积分活动 818913
科研通“疑难数据库(出版商)”最低求助积分说明 771153