脱氧核酶
化学
大肠杆菌
核糖核酸
DNA
体外
辅因子
生物化学
酶
基因
作者
Qinbin Zhou,Guangxiao Zhang,Yunping Wu,Qiang Zhang,Yi Liu,Yangyang Chang,Meng Liu
摘要
We report on the first efforts to isolate acidic RNA-cleaving DNAzymes (aRCDs) from a random-sequence DNA pool by in vitro selection that are activated by a microbe Escherichia coli (E. coli), at pH 5.3. Importantly, these E. coli-responsive aRCDs only require monovalent metal ions as cofactors for cleaving a fluorogenic chimeric DNA/RNA substrate. Such characteristics can be used to efficiently protect RCDs from both intrinsic chemical instability and external enzymatic degradation. One remarkable DNAzyme, aRCD-EC1, is specific for E. coli, and its target is likely a protein. Furthermore, truncated aRCD-EC1 had significantly improved catalytic activity with an observed rate constant (kobs) of 1.18 min-1, making it the fastest bacteria-responding RCD reported to date. Clinical evaluation of this aRCD-based fluorescent assay using 40 patient urine samples demonstrated a diagnostic sensitivity of 100% and a specificity of 100% at a total analysis time of 50 min without a bacterial culture. This work can expand the repertoire of DNAzymes that are active under nonphysiological conditions, thus facilitating the development of diverse DNAzyme-based biosensors in clinical diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI