Use of big data and machine learning algorithms to extract possible treatment targets in neurodevelopmental disorders

全基因组关联研究 机制(生物学) 大数据 数据科学 计算机科学 人工智能 认知科学 机器学习 神经科学 生物 心理学 遗传学 基因 单核苷酸多态性 认识论 操作系统 基因型 哲学
作者
Muhammad Ammar Malik,Stephen V. Faraone,Tom Michoel,Jan Haavik
出处
期刊:Pharmacology & Therapeutics [Elsevier BV]
卷期号:250: 108530-108530 被引量:2
标识
DOI:10.1016/j.pharmthera.2023.108530
摘要

Neurodevelopmental disorders (NDDs) impact multiple aspects of an individual's functioning, including social interactions, communication, and behaviors. The underlying biological mechanisms of NDDs are not yet fully understood, and pharmacological treatments have been limited in their effectiveness, in part due to the complex nature of these disorders and the heterogeneity of symptoms across individuals. Identifying genetic loci associated with NDDs can help in understanding biological mechanisms and potentially lead to the development of new treatments. However, the polygenic nature of these complex disorders has made identifying new treatment targets from genome-wide association studies (GWAS) challenging. Recent advances in the fields of big data and high-throughput tools have provided radically new insights into the underlying biological mechanism of NDDs. This paper reviews various big data approaches, including classical and more recent techniques like deep learning, which can identify potential treatment targets from GWAS and other omics data, with a particular emphasis on NDDs. We also emphasize the increasing importance of explainable and causal machine learning (ML) methods that can aid in identifying genes, molecular pathways, and more complex biological processes that may be future targets of intervention in these disorders. We conclude that these new developments in genetics and ML hold promise for advancing our understanding of NDDs and identifying novel treatment targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jenningseastera应助刘涵采纳,获得10
3秒前
天天快乐应助卡皮巴拉采纳,获得10
3秒前
DTkunkun发布了新的文献求助10
3秒前
5秒前
5秒前
在水一方应助化学采纳,获得10
5秒前
慕禅发布了新的文献求助10
6秒前
6秒前
Akim应助爬不起来采纳,获得10
7秒前
liangdayi357发布了新的文献求助10
7秒前
JamesPei应助lwei采纳,获得10
7秒前
8秒前
9秒前
阿阳完成签到,获得积分10
10秒前
今晚吃什么呢完成签到,获得积分10
10秒前
嫩牛五方发布了新的文献求助10
11秒前
楚辞发布了新的文献求助10
11秒前
张zhang发布了新的文献求助10
12秒前
Ziyi_Xu完成签到,获得积分10
12秒前
14秒前
Ricardo完成签到,获得积分10
15秒前
Orange应助今晚吃什么呢采纳,获得10
15秒前
AirJia完成签到,获得积分10
15秒前
17秒前
承影完成签到,获得积分10
17秒前
小二郎应助嫩牛五方采纳,获得10
18秒前
18秒前
可爱的函函应助errui采纳,获得10
18秒前
19秒前
XY给XY的求助进行了留言
19秒前
Yz_完成签到,获得积分20
20秒前
随便起个名完成签到,获得积分10
20秒前
UPUP0707完成签到,获得积分10
21秒前
科研通AI5应助柔弱如风采纳,获得10
21秒前
21秒前
卡皮巴拉发布了新的文献求助10
22秒前
珂儿完成签到,获得积分10
23秒前
su发布了新的文献求助10
24秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799888
求助须知:如何正确求助?哪些是违规求助? 3345183
关于积分的说明 10324169
捐赠科研通 3061781
什么是DOI,文献DOI怎么找? 1680528
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462