Machine learning enabled customization of performance-oriented hydrogen storage materials for fuel cell systems

氢气储存 材料科学 个性化 随机性 工艺工程 计算机科学 复合材料 数学 统计 工程类 万维网 有机化学 化学 合金
作者
Panpan Zhou,Xuezhang Xiao,Xinyu Zhu,Yongpeng Chen,Weiming Lü,Mingyuan Piao,Ziming Cao,Miao Lu,Fang Fang,Zhinian Li,Lijun Jiang,Lixin Chen
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:63: 102964-102964 被引量:43
标识
DOI:10.1016/j.ensm.2023.102964
摘要

Hydrogen storage materials with different crystal configurations have been extensively investigated for hydrogen promotion. To escape the dilemma of traditional trial-and-error composition optimization, in this work, efficient implicit/explicit features-based machine learning (ML) was applied for the first time to typical metal hydrides with the newly-constructed proprietary dataset. Excitingly, the most pivotal capacity-affecting factors (MeanIonicChar value/Fe content) were identified through feature importance ranking, facilitating efficient capacity estimation and formulation of high-capacity compositions. Subsequently, ML-based proactive properties scanning and composition customization were performed for fuel cell hydrogen feeding system. Generally, the measured hydrogen storage properties exhibit satisfactory accuracy and a validation relationship with the ML-based predicted values. In addition, an intrinsic link between atomic occupancy randomness and pressure-composition-temperature slope was revealed by theoretical calculations. Among the alloys developed from the advanced paradigms, Ti0.9Zr0.12Mn1.2Cr0.55(VFe)0.25 offers all-round properties (1.90 wt% / 127.30 kg H2/m3 in saturation) and overwhelming cost-effectiveness compared with the reported alloys at the moderate temperature and pressure level. In summary, ML-based composition customization pathways avoid substantial experimental investments and provide a novel option for efficient acquisition of high-performance hydrogen storage materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunly发布了新的文献求助10
1秒前
开心友儿完成签到,获得积分10
1秒前
1秒前
1秒前
haifang发布了新的文献求助10
1秒前
欢喜板凳发布了新的文献求助10
2秒前
健壮凡桃发布了新的文献求助10
2秒前
changyouhuang完成签到,获得积分10
2秒前
木子完成签到 ,获得积分10
2秒前
华仔应助鱼粥很好采纳,获得10
2秒前
鲁旭发布了新的文献求助20
3秒前
蜗牛完成签到,获得积分10
3秒前
科研通AI6应助张静怡采纳,获得10
3秒前
4秒前
4秒前
4秒前
wawu发布了新的文献求助10
4秒前
111完成签到,获得积分10
5秒前
贰陆发布了新的文献求助10
5秒前
斯文败类应助xiaofei采纳,获得10
5秒前
5秒前
6秒前
yaoenhao完成签到,获得积分10
6秒前
欧瑞吉发布了新的文献求助10
6秒前
J_Man完成签到,获得积分10
6秒前
leafsummer发布了新的文献求助10
6秒前
Tangerine完成签到,获得积分20
6秒前
某时某刻完成签到,获得积分10
7秒前
无花果应助张桂钊采纳,获得10
7秒前
标致念之完成签到,获得积分10
7秒前
已经吐了发布了新的文献求助10
7秒前
7秒前
追寻鞋垫完成签到 ,获得积分10
7秒前
烟花应助1234采纳,获得10
7秒前
妍yan发布了新的文献求助10
7秒前
8秒前
sanqian911完成签到,获得积分10
8秒前
科研通AI5应助健壮凡桃采纳,获得30
8秒前
8秒前
鱼粥很好发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5022700
求助须知:如何正确求助?哪些是违规求助? 4260451
关于积分的说明 13277898
捐赠科研通 4066793
什么是DOI,文献DOI怎么找? 2224343
邀请新用户注册赠送积分活动 1233238
关于科研通互助平台的介绍 1157181