InSAR Spatial-Heterogeneity Tropospheric Delay Correction in Steep Mountainous Areas Based on Deep Learning for Landslides Monitoring

干涉合成孔径雷达 对流层 山崩 遥感 合成孔径雷达 环境科学 地质学 大气校正 气候学 地震学 卫星 工程类 航空航天工程
作者
Hao Zhou,Keren Dai,Saied Pirasteh,R. Li,Jianming Xiang,Zhenhong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:17
标识
DOI:10.1109/tgrs.2023.3307477
摘要

Synthetic aperture radar interferometry (InSAR) technology has been widely used for landslide monitoring in mountainous areas. The troposphere in steep mountainous areas is affected by the variable topography, temperature, and humidity, which differs from that in plain areas and thus exhibits large spatial heterogeneity. Traditional InSAR troposphere correction methods are limited in this area, and the accuracy of InSAR measurements will be significantly affected. In this paper, we proposed a tropospheric delay correction method based on deep learning (AtmNet) without external data considering the spatial-heterogenetiy in each individual interferogram. The tropospheric correction and landslides monitoring based on Sentinel-1 SAR data was carried out in Mao County, a high landslide-prone area in southwest Sichuan Province (China). A simulation experiment was conducted to analyze the adaptability of the model and evaluate the effectiveness of the AtmNet method. Furthermore, we demonstrated the good performance of the AtmNet method through a comparison with the linear model (LM) and GACOS method, revealing that the proposed method could effectively model the spatial heterogeneity of tropospheric delay in steep mountains. The slope displacements that cannot be seen in the interferogram were very clear after the tropospheric delay correction. This method provides important technical support for the accurate DInSAR and time-series InSAR for landslide monitoring in steep mountainous areas in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你吼发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
加鱼发布了新的文献求助10
2秒前
开心的访旋完成签到,获得积分20
2秒前
斯文念波发布了新的文献求助10
2秒前
4秒前
gg发布了新的文献求助10
5秒前
sunyang发布了新的文献求助10
5秒前
沐允贤完成签到,获得积分10
6秒前
来轩发布了新的文献求助10
6秒前
bkagyin应助waoller1采纳,获得10
6秒前
SciGPT应助帆蚌侠采纳,获得10
6秒前
Jasper应助waoller1采纳,获得10
6秒前
清脆大树发布了新的文献求助10
6秒前
彭于晏应助waoller1采纳,获得10
6秒前
大模型应助waoller1采纳,获得10
6秒前
CodeCraft应助bingshuaizhao采纳,获得10
6秒前
jiang发布了新的文献求助10
7秒前
领导范儿应助yongjie20031121采纳,获得10
9秒前
CodeCraft应助加鱼采纳,获得10
9秒前
可可完成签到,获得积分20
9秒前
酷波er应助拼搏枕头采纳,获得10
10秒前
nano完成签到 ,获得积分10
10秒前
衷医课代表完成签到,获得积分20
11秒前
tuhaoli发布了新的文献求助10
13秒前
fancynancy应助小香草采纳,获得20
13秒前
13秒前
研友_nqaBGn发布了新的文献求助30
13秒前
沐晴完成签到,获得积分10
15秒前
lucygaga完成签到 ,获得积分10
15秒前
16秒前
17秒前
18秒前
19秒前
12313213发布了新的文献求助10
20秒前
天天发布了新的文献求助10
20秒前
嘿嘿应助衷医课代表采纳,获得10
20秒前
嘿嘿应助衷医课代表采纳,获得10
20秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
2024-2030全球与中国银包铜粉市场现状及未来发展趋势 1000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4051112
求助须知:如何正确求助?哪些是违规求助? 3589362
关于积分的说明 11406774
捐赠科研通 3315590
什么是DOI,文献DOI怎么找? 1823915
邀请新用户注册赠送积分活动 895714
科研通“疑难数据库(出版商)”最低求助积分说明 816954