亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advances in the Application of Artificial Intelligence-Based Spectral Data Interpretation: A Perspective

口译(哲学) 透视图(图形) 化学信息学 人工智能 专家系统 计算机科学 数据处理 过程(计算) 知识库 数据科学 人工神经网络 化学 机器学习 数据库 计算化学 操作系统 程序设计语言
作者
Xi Xue,Hanyu Sun,Minjian Yang,Xue Liu,Hai‐Yu Hu,Yafeng Deng,Xiaojian Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (37): 13733-13745 被引量:25
标识
DOI:10.1021/acs.analchem.3c02540
摘要

The interpretation of spectral data, including mass, nuclear magnetic resonance, infrared, and ultraviolet-visible spectra, is critical for obtaining molecular structural information. The development of advanced sensing technology has multiplied the amount of available spectral data. Chemical experts must use basic principles corresponding to the spectral information generated by molecular fragments and functional groups. This is a time-consuming process that requires a solid professional knowledge base. In recent years, the rapid development of computer science and its applications in cheminformatics and the emergence of computer-aided expert systems have greatly reduced the difficulty in analyzing large quantities of data. For expert systems, however, the problem-solving strategy must be known in advance or extracted by human experts and translated into algorithms. Gratifyingly, the development of artificial intelligence (AI) methods has shown great promise for solving such problems. Traditional algorithms, including the latest neural network algorithms, have shown great potential for both extracting useful information and processing massive quantities of data. This Perspective highlights recent innovations covering all of the emerging AI-based spectral interpretation techniques. In addition, the main limitations and current obstacles are presented, and the corresponding directions for further research are proposed. Moreover, this Perspective gives the authors' personal outlook on the development and future applications of spectral interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱的魔力转圈圈完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
32秒前
迷茫的一代完成签到,获得积分10
35秒前
xinjie完成签到,获得积分10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
wongcong发布了新的文献求助10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
曙光完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
一人独钓一江秋完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
量子星尘发布了新的文献求助150
4分钟前
4分钟前
4分钟前
4分钟前
橘子味的滚滚完成签到,获得积分10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
实力不允许完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
dawnfrf发布了新的文献求助20
6分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3878492
求助须知:如何正确求助?哪些是违规求助? 3421072
关于积分的说明 10721498
捐赠科研通 3145644
什么是DOI,文献DOI怎么找? 1735827
邀请新用户注册赠送积分活动 837932
科研通“疑难数据库(出版商)”最低求助积分说明 783480