Advances in the Application of Artificial Intelligence-Based Spectral Data Interpretation: A Perspective

口译(哲学) 透视图(图形) 化学信息学 人工智能 专家系统 计算机科学 数据处理 过程(计算) 知识库 数据科学 人工神经网络 化学 机器学习 数据库 计算化学 程序设计语言 操作系统
作者
Xi Xue,Hanyu Sun,Minjian Yang,Xue Liu,Hai‐Yu Hu,Yafeng Deng,Xiaojian Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (37): 13733-13745 被引量:30
标识
DOI:10.1021/acs.analchem.3c02540
摘要

The interpretation of spectral data, including mass, nuclear magnetic resonance, infrared, and ultraviolet-visible spectra, is critical for obtaining molecular structural information. The development of advanced sensing technology has multiplied the amount of available spectral data. Chemical experts must use basic principles corresponding to the spectral information generated by molecular fragments and functional groups. This is a time-consuming process that requires a solid professional knowledge base. In recent years, the rapid development of computer science and its applications in cheminformatics and the emergence of computer-aided expert systems have greatly reduced the difficulty in analyzing large quantities of data. For expert systems, however, the problem-solving strategy must be known in advance or extracted by human experts and translated into algorithms. Gratifyingly, the development of artificial intelligence (AI) methods has shown great promise for solving such problems. Traditional algorithms, including the latest neural network algorithms, have shown great potential for both extracting useful information and processing massive quantities of data. This Perspective highlights recent innovations covering all of the emerging AI-based spectral interpretation techniques. In addition, the main limitations and current obstacles are presented, and the corresponding directions for further research are proposed. Moreover, this Perspective gives the authors' personal outlook on the development and future applications of spectral interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
机灵柚子应助zhangry采纳,获得20
2秒前
草莓发布了新的文献求助10
2秒前
cfder发布了新的文献求助10
3秒前
4秒前
橙子发布了新的文献求助10
4秒前
qq发布了新的文献求助10
5秒前
5秒前
wyt关闭了wyt文献求助
5秒前
丘比特应助蚂蚁Y嘿采纳,获得10
5秒前
宇文雅琴完成签到,获得积分10
6秒前
7秒前
ding应助lily采纳,获得10
8秒前
10秒前
小小何发布了新的文献求助10
10秒前
顺利涵菡完成签到,获得积分20
10秒前
10秒前
qhcaywy完成签到,获得积分10
11秒前
11秒前
不配.应助宇文雨文采纳,获得200
12秒前
自由的伟帮完成签到 ,获得积分10
12秒前
深情安青应助小马同学采纳,获得30
12秒前
小气鬼发布了新的文献求助10
13秒前
freya完成签到,获得积分10
14秒前
MapleLeaf完成签到,获得积分10
14秒前
科研通AI6应助etc采纳,获得10
15秒前
15秒前
浮游应助星陨采纳,获得10
16秒前
怕黑的纸鹤完成签到 ,获得积分10
16秒前
蚂蚁Y嘿发布了新的文献求助10
17秒前
顺利涵菡发布了新的文献求助10
17秒前
猫毛发布了新的文献求助30
17秒前
庞伟泽完成签到,获得积分10
18秒前
ly发布了新的文献求助20
18秒前
zyyyyfff完成签到,获得积分10
19秒前
20秒前
隐形曼青应助wsc采纳,获得10
22秒前
22秒前
wyt发布了新的文献求助30
23秒前
bkagyin应助好好好采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849666
求助须知:如何正确求助?哪些是违规求助? 4149102
关于积分的说明 12852152
捐赠科研通 3896396
什么是DOI,文献DOI怎么找? 2141642
邀请新用户注册赠送积分活动 1161158
关于科研通互助平台的介绍 1061225