亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smart Fiber-Optic Distributed Acoustic Sensing (sDAS) With Multitask Learning for Time-Efficient Ground Listening Applications

计算机科学 人工智能 分布式声传感 稳健性(进化) 光纤 多任务学习 实时计算 积极倾听 特征提取 模式识别(心理学) 任务(项目管理) 语音识别 光纤传感器 电信 工程类 社会学 基因 生物化学 沟通 化学 系统工程
作者
Huijuan Wu,Yufeng Wang,Xinyu Liu,Yuwen Sun,Guofeng Yan,Yu Wu,Yunjiang Rao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 8511-8525 被引量:7
标识
DOI:10.1109/jiot.2023.3320149
摘要

In recent years, fiber-optical distributed acoustic sensing (DAS) has been applied to various large-scale infrastructure monitoring areas in smart cities, leading to a new generation of fiber-optic IoT for ground listening. However, its single-task-focused postprocessing methods cannot achieve real-time efficient ground event recognition and localization concurrently. In this article, a two-level multitask learning (MTL) enhanced smart fiber-optical DAS (sDAS) system is proposed, for the first time, to simultaneously realize ground event recognition and localization. Performances and efficiency of both tasks are significantly improved by sharing knowledge across them. Besides, the imbalanced incremental learning ability for new events is also enhanced in the proposed MTL network. The total computation time for the two tasks is greatly shortened to 0.3 ms for a spatial-temporal sample with 129-m fiber length and 5-s time frame, which equals to a processing time of 0.04 s over a total fiber length of 18.7-km with a spatial sampling interval of 1.29 m, and is even better than the fastest single recognition reported to date. In the field test, such an MTL-enhanced sDAS system indicates excellent feature extraction performance with classification accuracy of up to 99.46% for five events and location error of ±1 m for two core-events at 8/16 different radial distances, which are much better than the DAS systems with multiclassifier and the combined single-task learning methods. Also, the MTL-enhanced sDAS shows strong robustness against environmental noises. Hence, it provides a breakthrough technology for time-efficient multitask processing in smart distributed sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助高大的帆布鞋采纳,获得10
1秒前
正在获取昵称中...完成签到,获得积分10
2秒前
7秒前
斯文败类应助yyy采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
27秒前
Owen应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
28秒前
uikymh完成签到 ,获得积分0
36秒前
37秒前
37秒前
42秒前
yyy发布了新的文献求助10
43秒前
科研通AI2S应助yyy采纳,获得10
52秒前
123完成签到,获得积分10
54秒前
小何完成签到,获得积分10
58秒前
1分钟前
www发布了新的文献求助10
1分钟前
高大的帆布鞋完成签到,获得积分20
1分钟前
CodeCraft应助www采纳,获得10
1分钟前
ZhaoPeng完成签到,获得积分10
1分钟前
jjx1005完成签到 ,获得积分10
2分钟前
2分钟前
LANER完成签到 ,获得积分10
2分钟前
宓飞烟发布了新的文献求助10
2分钟前
CodeCraft应助西啊西采纳,获得10
2分钟前
sihaibo完成签到,获得积分10
2分钟前
HarryYang完成签到,获得积分10
2分钟前
2分钟前
宓飞烟完成签到,获得积分10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
2分钟前
孤独君浩发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助淡然的蚂蚁采纳,获得30
2分钟前
Dawn发布了新的文献求助30
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795549
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300485
捐赠科研通 3057085
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762491