Radiomics analysis from magnetic resonance imaging in predicting the grade of nonfunctioning pancreatic neuroendocrine tumors: a multicenter study

医学 无线电技术 神经组阅片室 放射科 磁共振成像 接收机工作特性 神经内分泌肿瘤 有效扩散系数 放射性武器 内科学 神经学 精神科
作者
Hai‐Bin Zhu,Haitao Zhu,Jiang Liu,Pei Nie,Juan Hu,Wei Tang,Xiaoyan Zhang,Xiao-Ting Li,Qian Yao,Ying‐Shi Sun
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:34 (1): 90-102 被引量:7
标识
DOI:10.1007/s00330-023-09957-7
摘要

Abstract Objectives To explore the potential of radiomics features to predict the histologic grade of nonfunctioning pancreatic neuroendocrine tumor (NF-PNET) patients using non-contrast sequence based on MRI. Methods Two hundred twenty-eight patients with NF-PNETs undergoing MRI at 5 centers were retrospectively analyzed. Data from center 1 ( n = 115) constituted the training cohort, and data from centers 2–5 ( n = 113) constituted the testing cohort. Radiomics features were extracted from T2-weighted images and the apparent diffusion coefficient. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures. The area under receiver operating characteristic curve (AUC) was performed to assess models. Results Tumor boundary, enhancement homogeneity, and vascular invasion were used to construct the radiological model to stratify NF-PNET patients into grade 1 and 2/3 groups, which yielded AUC of 0.884 and 0.684 in the training and testing groups. A radiomics model including 4 features was constructed, with an AUC of 0.941 and 0.871 in the training and testing cohorts. The fusion model combining the radiomics signature and radiological characteristics showed good performance in the training set (AUC = 0.956) and in the testing set (AUC = 0.864), respectively. Conclusion The developed model that integrates radiomics features with radiological characteristics could be used as a non-invasive, dependable, and accurate tool for the preoperative prediction of grade in NF-PNETs. Clinical relevance statement Our study revealed that the fusion model based on a non-contrast MR sequence can be used to predict the histologic grade before operation. The radiomics model may be a new and effective biological marker in NF-PNETs. Key Points The diagnostic performance of the radiomics model and fusion model was better than that of the model based on clinical information and radiological features in predicting grade 1 and 2/3 of nonfunctioning pancreatic neuroendocrine tumors (NF-PNETs). Good performance of the model in the four external testing cohorts indicated that the radiomics model and fusion model for predicting the grades of NF-PNETs were robust and reliable, indicating the two models could be used in the clinical setting and facilitate the surgeons’ decision on risk stratification. The radiomics features were selected from non-contrast T2-weighted images (T2WI) and diffusion-weighted imaging (DWI) sequence, which means that the administration of contrast agent was not needed in grading the NF-PNETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
舒远发布了新的文献求助30
2秒前
风中天宇发布了新的文献求助10
4秒前
乐乱完成签到 ,获得积分10
4秒前
科研通AI5应助ponytail采纳,获得10
4秒前
妮妮发布了新的文献求助10
4秒前
李健的小迷弟应助嘿嘿嘿采纳,获得10
5秒前
Somnolence咩完成签到,获得积分10
5秒前
Mark_He发布了新的文献求助10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
伶俐千柳应助科研通管家采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
李健的小迷弟应助lxz采纳,获得10
8秒前
斩荆披棘完成签到,获得积分10
10秒前
kido完成签到,获得积分10
12秒前
搞怪尔芙发布了新的文献求助10
12秒前
深情安青应助平安如意采纳,获得10
14秒前
jiujiu完成签到,获得积分10
17秒前
18秒前
Voskov发布了新的文献求助10
19秒前
合适的涫发布了新的文献求助10
25秒前
沅芷完成签到,获得积分10
25秒前
科研通AI5应助品123采纳,获得10
25秒前
26秒前
Owen应助无情人杰采纳,获得10
27秒前
深情安青应助外向访卉采纳,获得10
28秒前
wanci应助妮妮采纳,获得10
29秒前
29秒前
kido发布了新的文献求助10
31秒前
烟花应助Jolin采纳,获得10
32秒前
半。。发布了新的文献求助10
34秒前
35秒前
Songjia123完成签到 ,获得积分10
36秒前
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784481
求助须知:如何正确求助?哪些是违规求助? 3329665
关于积分的说明 10242830
捐赠科研通 3045021
什么是DOI,文献DOI怎么找? 1671569
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391