Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study

列线图 医学 接收机工作特性 无线电技术 乳腺癌 恶性肿瘤 放射科 乳房成像 队列 置信区间 双雷达 癌症 肿瘤科 内科学 乳腺摄影术
作者
Peiyan Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Xin‐Wu Cui,Xing Wu,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175023-175023 被引量:2
标识
DOI:10.1088/1361-6560/acec2d
摘要

Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ZY完成签到 ,获得积分10
4秒前
暮晓见完成签到 ,获得积分10
5秒前
马甲发布了新的文献求助10
5秒前
VDC发布了新的文献求助10
6秒前
小林完成签到,获得积分10
6秒前
名丿完成签到,获得积分10
7秒前
布毁黑完成签到 ,获得积分10
11秒前
HOPE发布了新的文献求助10
12秒前
李冰洋完成签到,获得积分10
19秒前
所所应助Shandongdaxiu采纳,获得10
21秒前
左登峰完成签到,获得积分10
22秒前
Jro完成签到,获得积分10
29秒前
科研通AI5应助科研小白采纳,获得10
31秒前
31秒前
allegiance完成签到 ,获得积分10
32秒前
guohong完成签到 ,获得积分10
32秒前
33秒前
眼睛大又蓝完成签到,获得积分10
34秒前
李向东发布了新的文献求助10
36秒前
小四喜发布了新的文献求助10
38秒前
科研通AI5应助李向东采纳,获得10
44秒前
成就莞完成签到,获得积分10
45秒前
大气的乌冬面完成签到,获得积分10
47秒前
47秒前
47秒前
科研通AI5应助sheila采纳,获得10
51秒前
CipherSage应助Alex采纳,获得10
53秒前
Owen应助shuyu采纳,获得10
54秒前
算不尽发布了新的文献求助10
54秒前
科研小白发布了新的文献求助10
55秒前
科科科科呃完成签到,获得积分10
55秒前
乐乐应助钱念波采纳,获得10
55秒前
57秒前
无为完成签到 ,获得积分10
1分钟前
1分钟前
北秋颐完成签到,获得积分20
1分钟前
科研通AI5应助彬子采纳,获得10
1分钟前
cc完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751