Predicting the microvascular invasion and tumor grading of intrahepatic mass-forming cholangiocarcinoma based on magnetic resonance imaging radiomics and morphological features

列线图 医学 分级(工程) 磁共振成像 放射科 无线电技术 肝内胆管癌 接收机工作特性 单变量分析 单变量 核医学 多元分析 病理 多元统计 肿瘤科 计算机科学 内科学 机器学习 土木工程 工程类
作者
Shuang Chen,Yumeng Zhu,Lijuan Wan,Shuangmei Zou,Hongmei Zhang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (12): 8079-8093 被引量:6
标识
DOI:10.21037/qims-23-11
摘要

Preoperative diagnosis of microvascular invasion (MVI) and tumor grading of intrahepatic mass-forming cholangiocarcinoma (IMCC) using imaging findings can facilitate patient treatment decision-making. This study was conducted to establish and validate nomograms based on magnetic resonance imaging (MRI) radiomics and morphological features for predicting the MVI and tumor grading of IMCC before radical hepatectomy.A total of 235 patients with resected IMCC at the Chinese Academy of Medical Sciences and Peking Union Medical College were divided into a training set (n=167) and a validation set (n=68), retrospectively. Clinical data and MRI morphological features were recorded. Univariate and multivariate analyses were conducted to identify the significant features for the prediction of MVI and tumor grading. Radiomics features were extracted from T2-weighted imaging fat-suppressed and diffusion-weighted imaging (DWI). Radiomics signatures (rad_scores) were built based on the least absolute shrinkage and selection operator (LASSO) method. Then, the nomograms were constructed by combining the rad_scores and the significant clinical or MRI morphologic features. The predictive performances for MVI and tumor grading were evaluated by the area under the receiver operating characteristic curve (AUC), calibration, and clinical utility.Totals of 16 and 9 radiomics features were selected to build the rad_scores for the prediction of MVI and tumor grading for the training and validation set, respectively. The nomogram for the prediction of MVI comprised the morphologic features including number of tumors, tumor margin, and rad_score. For the prediction of tumor grading, the nomogram comprised the number of tumors, tumor necrosis, and rad_score. The best discriminations were observed in the training and validation sets for the MVI nomogram [AUCs of 0.874, 95% confidence interval (CI): (0.822-0.926) and 0.869 (0.783-0955)] and tumor grading nomogram [AUCs of 0.827 (0.763-0.891) and 0.848 (0.759-0.937)]. Decision curve analysis (DCA) further confirmed the clinical utilities of the nomograms.Nomograms based on MRI radiomics and morphological features can effectively predict the individualized risks of MVI and tumor grading for IMCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大林发布了新的文献求助30
1秒前
2秒前
辣辣完成签到,获得积分20
5秒前
6秒前
cherish发布了新的文献求助10
6秒前
英姑应助关外李少采纳,获得10
6秒前
阳光海云发布了新的文献求助10
9秒前
赘婿应助orange采纳,获得10
9秒前
喜悦的乐天完成签到,获得积分10
10秒前
wuwanchun完成签到,获得积分10
10秒前
Yiling完成签到,获得积分10
10秒前
沉默白猫完成签到,获得积分10
11秒前
11秒前
12秒前
科研通AI5应助Zhenhao采纳,获得10
12秒前
乔木的养完成签到,获得积分10
13秒前
Jamie发布了新的文献求助10
13秒前
wuwanchun发布了新的文献求助60
13秒前
14秒前
小黄发布了新的文献求助10
15秒前
16秒前
大林完成签到,获得积分10
16秒前
领导范儿应助光亮灯泡采纳,获得10
16秒前
17秒前
17秒前
小魏完成签到,获得积分10
20秒前
AteeqBaloch发布了新的文献求助10
20秒前
一一六完成签到 ,获得积分10
21秒前
隐形曼青应助Jamie采纳,获得10
21秒前
孤岛发布了新的文献求助10
22秒前
关外李少发布了新的文献求助10
22秒前
慕青应助linhanwenzhou采纳,获得10
22秒前
23秒前
23秒前
25秒前
怡然万声发布了新的文献求助10
25秒前
大个应助玲儿采纳,获得10
29秒前
深情安青应助cherish采纳,获得10
29秒前
落雁沙发布了新的文献求助10
29秒前
万能图书馆应助不要长胖采纳,获得10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635