A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer

卷积神经网络 变压器 计算机科学 特征提取 分类器(UML) 人工智能 模式识别(心理学) 特征学习 电子工程 工程类 电压 电气工程
作者
Wenkai Liu,Zhigang Zhang,Jiarui Zhang,Haixiang Huang,Guocheng Zhang,Mingda Peng
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (8): 1838-1838 被引量:22
标识
DOI:10.3390/electronics12081838
摘要

Efficient and accurate fault diagnosis plays an essential role in the safe operation of machinery. In respect of fault diagnosis, various data-driven methods based on deep learning have attracted widespread attention for research in recent years. Considering the limitations of feature representation in convolutional structures for fault diagnosis, and the demanding requirements on the quality of data for Transformer structures, an intelligent method of fault diagnosis is proposed in the present study for bearings, namely Efficient Convolutional Transformer (ECTN). Firstly, the time-frequency representation is achieved by means of short-time Fourier transform for the original signal. Secondly, the low-level local features are extracted using an efficient convolution module. Then, the global information is extracted through transformer. Finally, the results of fault diagnosis are obtained by the classifier. Moreover, experiments are conducted on two different bearing datasets to obtain the experimental results showing that the proposed method is effective in combining the advantages of CNN and transformer. In comparison with other single-structure methods of fault diagnosis, the method proposed in this study produces a better diagnostic performance in the context of limited data volume, strong noise, and variable operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ED应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
zho应助科研通管家采纳,获得20
1秒前
华仔应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得20
1秒前
May应助科研通管家采纳,获得20
1秒前
Akim应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
糖淘淘完成签到,获得积分10
3秒前
秋霜完成签到 ,获得积分10
5秒前
可爱的函函应助fan采纳,获得10
6秒前
执着幻然完成签到 ,获得积分10
7秒前
耍酷千亦完成签到 ,获得积分10
7秒前
游大侠发布了新的文献求助30
8秒前
VitoLi发布了新的文献求助10
8秒前
10秒前
CR7应助可耐的思枫采纳,获得20
12秒前
13秒前
CR7举报易酰水烊酸求助涉嫌违规
14秒前
15秒前
xuexin完成签到 ,获得积分20
15秒前
16秒前
fan发布了新的文献求助10
19秒前
年轻迪奥完成签到,获得积分10
19秒前
20秒前
丘比特应助无辜的书雁采纳,获得10
22秒前
愚人发布了新的文献求助10
25秒前
于舒婷完成签到,获得积分10
26秒前
26秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942702
求助须知:如何正确求助?哪些是违规求助? 3487860
关于积分的说明 11045758
捐赠科研通 3218409
什么是DOI,文献DOI怎么找? 1778885
邀请新用户注册赠送积分活动 864448
科研通“疑难数据库(出版商)”最低求助积分说明 799504