From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning

计算机科学 物理
作者
Juan Diego Toscano,Vivek Oommen,Alan John Varghese,Zongren Zou,Nazanin Ahmadi Daryakenari,Chenxi Wu,George Em Karniadakis
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.13228
摘要

Physics-Informed Neural Networks (PINNs) have emerged as a key tool in Scientific Machine Learning since their introduction in 2017, enabling the efficient solution of ordinary and partial differential equations using sparse measurements. Over the past few years, significant advancements have been made in the training and optimization of PINNs, covering aspects such as network architectures, adaptive refinement, domain decomposition, and the use of adaptive weights and activation functions. A notable recent development is the Physics-Informed Kolmogorov-Arnold Networks (PIKANS), which leverage a representation model originally proposed by Kolmogorov in 1957, offering a promising alternative to traditional PINNs. In this review, we provide a comprehensive overview of the latest advancements in PINNs, focusing on improvements in network design, feature expansion, optimization techniques, uncertainty quantification, and theoretical insights. We also survey key applications across a range of fields, including biomedicine, fluid and solid mechanics, geophysics, dynamical systems, heat transfer, chemical engineering, and beyond. Finally, we review computational frameworks and software tools developed by both academia and industry to support PINN research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助SS采纳,获得10
刚刚
Akim应助yly采纳,获得10
3秒前
5秒前
5秒前
wanci应助worker采纳,获得10
5秒前
独立卫生间完成签到,获得积分10
6秒前
斯文败类应助海的呼唤采纳,获得10
7秒前
wanci应助原野采纳,获得10
8秒前
9秒前
10秒前
HiK完成签到,获得积分10
10秒前
10秒前
不上课不行完成签到,获得积分10
10秒前
Junlin发布了新的文献求助10
13秒前
十三发布了新的文献求助10
14秒前
李爱国应助郭666采纳,获得10
14秒前
Li发布了新的文献求助10
15秒前
SUV发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
20秒前
20秒前
Lucas应助我的小k8采纳,获得10
20秒前
luying发布了新的文献求助10
22秒前
fancy发布了新的文献求助10
24秒前
osachon完成签到,获得积分10
24秒前
来到火山口的大企鹅完成签到,获得积分10
25秒前
幸运鹅完成签到 ,获得积分10
25秒前
26秒前
理理关注了科研通微信公众号
26秒前
jwx应助luying采纳,获得10
27秒前
27秒前
28秒前
ZhaoY完成签到,获得积分10
28秒前
30秒前
缺文献完成签到,获得积分10
30秒前
30秒前
我的小k8发布了新的文献求助10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133747
求助须知:如何正确求助?哪些是违规求助? 3670574
关于积分的说明 11606658
捐赠科研通 3366901
什么是DOI,文献DOI怎么找? 1849786
邀请新用户注册赠送积分活动 913325
科研通“疑难数据库(出版商)”最低求助积分说明 828563