Multi-layer feature fusion and attention enhancement for fine-grained vehicle recognition research

计算机科学 人工智能 特征(语言学) 冗余(工程) 任务(项目管理) 对象(语法) 模式识别(心理学) 图层(电子) 班级(哲学) 计算机视觉 工程类 哲学 语言学 化学 系统工程 有机化学 操作系统
作者
Shouyang Zhang,Yong Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015012-015012
标识
DOI:10.1088/1361-6501/ad8592
摘要

Abstract Vehicle recognition technology is widely applied in automatic parking, traffic restrictions, and public security investigations, playing a significant role in the construction of intelligent transportation systems. Fine-grained vehicle recognition seeks to surpass conventional vehicle recognition by concentrating on more detailed sub-classifications. This task is more challenging due to the subtle inter-class differences and significant intra-class variations. Localization-classification subnetworks represent an efficacious approach frequently employed for this task, but previous research has typically relied on CNN deep feature maps for object localization, which suffer from the low resolution, leading to poor localization accuracy. The multi-layer feature fusion localization method proposed by us fuses the high-resolution feature map of the shallow layer of CNN with the deep feature map, and makes full use of the rich spatial information of the shallow feature map to achieve more precise object localization. In addition, traditional methods acquire local attention information through the design of complex models, frequently resulting in regional redundancy or information omission. To address this, we introduce an attention module that adaptively enhances the expressiveness of global features and generates global attention features. These global attention features are then integrated with object-level features and local attention cues to achieve a more comprehensive attention enhancement. Lastly, we devise a multi-branch model and employ the aforementioned object localization and attention enhancement methods for end-to-end training to make the multiple branches collaborate seamlessly to adequately extract fine-grained features. Extensive experiments conducted on the Stanford Cars dataset and the self-built Cars-126 dataset have demonstrated the effectiveness of our method, achieving a leading position among existing methods with 97.7% classification accuracy on the Stanford Cars dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助你说要叫啥采纳,获得10
刚刚
刚刚
1秒前
曾经不评发布了新的文献求助10
2秒前
拿捏陕科大完成签到,获得积分10
2秒前
fanfanzzz完成签到 ,获得积分10
2秒前
故酒应助皮蛋采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助jue123采纳,获得10
4秒前
冷艳中蓝发布了新的文献求助10
6秒前
祯果粒发布了新的文献求助10
6秒前
7秒前
一只想做科研的狗完成签到,获得积分10
7秒前
Lucas应助SHY采纳,获得10
7秒前
8秒前
bjyx完成签到,获得积分10
8秒前
齐羽完成签到,获得积分10
8秒前
曾经不评完成签到,获得积分10
8秒前
冷静煎饼发布了新的文献求助10
10秒前
一叶不柳晴完成签到,获得积分20
10秒前
11秒前
11秒前
Rainy发布了新的文献求助200
11秒前
12秒前
江凡儿发布了新的文献求助50
13秒前
byby完成签到,获得积分10
14秒前
14秒前
标致如之发布了新的文献求助10
15秒前
15秒前
16秒前
弦歌发布了新的文献求助10
16秒前
默然回首发布了新的文献求助10
16秒前
Lelym驳回了十三应助
16秒前
Martin发布了新的文献求助10
16秒前
Ava应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
cdercder应助科研通管家采纳,获得20
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
18秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803508
求助须知:如何正确求助?哪些是违规求助? 3348396
关于积分的说明 10338293
捐赠科研通 3064441
什么是DOI,文献DOI怎么找? 1682571
邀请新用户注册赠送积分活动 808307
科研通“疑难数据库(出版商)”最低求助积分说明 764034