Towards a more realistic approach to the problem of detecting fuel leaks in filling stations: Mixed time windows

计算机科学 数据挖掘 运筹学 工程类
作者
Pedro Toledo,Rafael Arnay,Javier Hernández,M. Sigut,Silvia Alayón
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:468: 143094-143094 被引量:1
标识
DOI:10.1016/j.jclepro.2024.143094
摘要

The early detection of fuel leaks in filling stations is crucial to minimize environmental risks, such as soil and groundwater contamination. There are some commercial products for fuel leakage detection based on statistical analysis of data from station inventory books. Although they solve the tackled problem, they have some important drawbacks, such as their high price, and issues related to the privacy of station data, which must be shared with the company owning the reconciliation technology. In this work, a solution based on Artificial Intelligence is proposed to address this problem. Machine Learning techniques, specifically two-class supervised classifiers, are applied to data extracted from inventory books of real petrol stations. The classification models used in this paper are trained and tested with real data of days without leaks and simulated data of days with leaks. Thus, the more representative of reality these data are, the better the classifiers will work when implemented in a real filling station. In this sense, the most novel contribution of this paper is the way in which the training sets are constructed to achieve a realistic scenario. These sets are composed of time data windows in which the leak can begin on any day within the window, not necessarily on the first day, as the authors had assumed in a previous contribution. Therefore, they are mixed windows containing a variable number of non-leaking and leaking days. In addition, the design of these data sets complies with the requirements of the current European standard UNE-EN 13160–5. This allows the classifiers to work under even more realistic conditions and thus increase the practical applicability of their results. This work demonstrates that by using two-class classifiers it is possible not only to comply with the standard in terms of the maximum allowable ratio of false positives and false negatives, but also to detect the leak in a shorter time than that established in the norm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虾米发布了新的文献求助10
刚刚
5秒前
波波完成签到 ,获得积分10
6秒前
柠檬精翠翠完成签到 ,获得积分10
7秒前
无花果应助XLC采纳,获得10
9秒前
11秒前
加油干完成签到 ,获得积分10
14秒前
虾米发布了新的文献求助10
15秒前
Slhy完成签到 ,获得积分10
15秒前
思源应助miu采纳,获得10
15秒前
YQQ完成签到,获得积分10
16秒前
火星上的飞柏完成签到,获得积分10
17秒前
20秒前
科目三应助zoro采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
牧长一完成签到 ,获得积分0
22秒前
机智向薇发布了新的文献求助10
23秒前
高思博发布了新的文献求助10
23秒前
磊大彪完成签到,获得积分20
26秒前
28秒前
fbdenrnb发布了新的文献求助10
31秒前
华仔应助虾米采纳,获得10
32秒前
Orange应助虾米采纳,获得10
32秒前
wwwzy完成签到,获得积分20
41秒前
41秒前
clock完成签到 ,获得积分10
42秒前
龙舞星完成签到,获得积分10
44秒前
Genji发布了新的文献求助10
46秒前
小酸奶完成签到,获得积分10
46秒前
fbdenrnb完成签到,获得积分10
47秒前
我是老大应助加菲丰丰采纳,获得10
51秒前
56秒前
Twelve驳回了乐乐应助
57秒前
华仔应助吗喽大人采纳,获得10
1分钟前
ZW完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751